

EUROPEAN COMMITTEE FOR STANDARDIZATION
C O M I T É E U R O P É E N D E N O R M A LI S A T I O N
EUR OP ÄIS C HES KOM ITEE FÜR NOR M UNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

© 2015 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No.:CWA 16926-5:2015 E

CEN

WORKSHOP

AGREEMENT

 CWA 16926-5

 August 2015

ICS 35.200; 35.240.15; 35.240.40

English version

 Extensions for Financial Services (XFS) interface specification
Release 3.30 - Part 5: Cash Dispenser Device Class Interface -

Programmer's Reference

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of
which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National
Members of CEN but neither the National Members of CEN nor the CEN-CENELEC Management Centre can be held accountable for the
technical content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania,
Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United
Kingdom.

CWA 16926-5:2015 (E)

2

Table of Contents

European foreword ... 4

1. Introduction... 7

1.1 Background to Release 3.30 ... 7
1.2 XFS Service-Specific Programming .. 7

2. Cash Dispensers ... 9

3. References .. 10

4. Info Commands.. 11

4.1 WFS_INF_CDM_STATUS .. 11

4.2 WFS_INF_CDM_CAPABILITIES... 16
4.3 WFS_INF_CDM_CASH_UNIT_INFO ... 21
4.4 WFS_INF_CDM_TELLER_INFO ... 28

4.5 WFS_INF_CDM_CURRENCY_EXP .. 30
4.6 WFS_INF_CDM_MIX_TYPES ... 31
4.7 WFS_INF_CDM_MIX_TABLE ... 32

4.8 WFS_INF_CDM_PRESENT_STATUS... 33
4.9 WFS_INF_CDM_GET_ITEM_INFO ... 35
4.10 WFS_INF_CDM_GET_BLACKLIST .. 37

4.11 WFS_INF_CDM_GET_ALL_ITEMS_INFO... 38

5. Execute Commands.. 41

5.1 WFS_CMD_CDM_DENOMINATE ... 41
5.2 WFS_CMD_CDM_DISPENSE... 44
5.3 WFS_CMD_CDM_COUNT.. 48

5.4 WFS_CMD_CDM_PRESENT.. 51
5.5 WFS_CMD_CDM_REJECT .. 53
5.6 WFS_CMD_CDM_RETRACT.. 54
5.7 WFS_CMD_CDM_OPEN_SHUTTER .. 57

5.8 WFS_CMD_CDM_CLOSE_SHUTTER .. 58
5.9 WFS_CMD_CDM_SET_TELLER_INFO .. 59
5.10 WFS_CMD_CDM_SET_CASH_UNIT_INFO .. 60

5.11 WFS_CMD_CDM_START_EXCHANGE.. 62
5.12 WFS_CMD_CDM_END_EXCHANGE.. 64
5.13 WFS_CMD_CDM_OPEN_SAFE_DOOR ... 66

5.14 WFS_CMD_CDM_CALIBRATE_CASH_UNIT ... 67
5.15 WFS_CMD_CDM_SET_MIX_TABLE .. 69
5.16 WFS_CMD_CDM_RESET .. 70

5.17 WFS_CMD_CDM_TEST_CASH_UNITS .. 73

CWA 16926-5:2015 (E)

3

5.18 WFS_CMD_CDM_SET_GUIDANCE_LIGHT ... 75
5.19 WFS_CMD_CDM_POWER_SAVE_CONTROL.. 77

5.20 WFS_CMD_CDM_PREPARE_DISPENSE... 78
5.21 WFS_CMD_CDM_SET_BLACKLIST .. 79
5.22 WFS_CMD_CDM_SYNCHRONIZE_COMMAND.. 80

6. Events ... 81

6.1 WFS_SRVE_CDM_SAFEDOOROPEN.. 81
6.2 WFS_SRVE_CDM_SAFEDOORCLOSED ... 82

6.3 WFS_USRE_CDM_CASHUNITTHRESHOLD .. 83
6.4 WFS_SRVE_CDM_CASHUNITINFOCHANGED .. 84
6.5 WFS_SRVE_CDM_TELLERINFOCHANGED .. 85

6.6 WFS_EXEE_CDM_DELAYEDDISPENSE ... 86
6.7 WFS_EXEE_CDM_STARTDISPENSE .. 87
6.8 WFS_EXEE_CDM_CASHUNITERROR ... 88

6.9 WFS_SRVE_CDM_ITEMSTAKEN .. 89
6.10 WFS_SRVE_CDM_COUNTS_CHANGED ... 90
6.11 WFS_EXEE_CDM_PARTIALDISPENSE ... 91

6.12 WFS_EXEE_CDM_SUBDISPENSEOK ... 92
6.13 WFS_EXEE_CDM_INCOMPLETEDISPENSE ... 93
6.14 WFS_EXEE_CDM_NOTEERROR ... 94

6.15 WFS_SRVE_CDM_ITEMSPRESENTED ... 95
6.16 WFS_SRVE_CDM_MEDIADETECTED ... 96
6.17 WFS_EXEE_CDM_INPUT_P6 .. 97

6.18 WFS_SRVE_CDM_DEVICEPOSITION.. 98
6.19 WFS_SRVE_CDM_POWER_SAVE_CHANGE .. 99
6.20 WFS_EXEE_CDM_INFO_AVAILABLE ... 100

6.21 WFS_EXEE_CDM_INCOMPLETERETRACT .. 101
6.22 WFS_SRVE_CDM_SHUTTERSTATUSCHANGED .. 102

7. Sub-Dispensing Command Flow... 103

8. Rules for Cash Unit Exchange... 106

9. Events Associated with Cash Unit Status Changes .. 107

9.1 One Physical Cash Unit Goes LOW .. 107

9.2 Last Physical Cash Unit Goes LOW .. 108
9.3 One Physical Cash Unit Goes INOP .. 109
9.4 Last Physical Cash Unit Goes EMPTY .. 110

10. Multiple Dispense Command Flow ... 111

11. C - Header file ... 113

CWA 16926-5:2015 (E)

4

European foreword

This CWA is revision 3.30 of the XFS interface specification.

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested
parties on March 19th 2015, the constitution of which was supported by CEN following the public call for
participation made on 1998-06-24. The specification is continuously reviewed and commented in the CEN/ISSS
Workshop on XFS. It is therefore expected that an update of the specification will be published in due time as a
CWA, superseding this revision 3.30.

A list of the individuals and organizations which supported the technical consensus represented by the CEN
Workshop Agreement is available from the CEN/XFS Secretariat. The CEN XFS Workshop gathered suppliers as
well as banks and other financial service companies.

The CWA is published as a multi-part document, consisting of:

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI) - Programmer's Reference

Part 2: Service Classes Definition - Programmer's Reference

Part 3: Printer and Scanning Device Class Interface - Programmer's Reference

Part 4: Identification Card Device Class Interface - Programmer's Reference

Part 5: Cash Dispenser Device Class Interface - Programmer's Reference

Part 6: PIN Keypad Device Class Interface - Programmer's Reference

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference

Part 8: Depository Device Class Interface - Programmer's Reference

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference

Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference

Part 12: Camera Device Class Interface - Programmer's Reference

Part 13: Alarm Device Class Interface - Programmer's Reference

Part 14: Card Embossing Unit Device Class Interface - Programmer's Reference

Part 15: Cash-In Module Device Class Interface - Programmer's Reference

Part 16: Card Dispenser Device Class Interface - Programmer's Reference

Part 17: Barcode Reader Device Class Interface - Programmer's Reference

Part 18: Item Processing Module Device Class Interface- Programmer's Reference

Parts 19 - 28: Reserved for future use.

Parts 29 through 47 constitute an optional addendum to this CWA. They define the integration between the SNMP
standard and the set of status and statistical information exported by the Service Providers.

Part 29: XFS MIB Architecture and SNMP Extensions - Programmer’s Reference

Part 30: XFS MIB Device Specific Definitions - Printer Device Class

Part 31: XFS MIB Device Specific Definitions - Identification Card Device Class

Part 32: XFS MIB Device Specific Definitions - Cash Dispenser Device Class

Part 33: XFS MIB Device Specific Definitions - PIN Keypad Device Class

Part 34: XFS MIB Device Specific Definitions - Check Reader/Scanner Device Class

Part 35: XFS MIB Device Specific Definitions - Depository Device Class

Part 36: XFS MIB Device Specific Definitions - Text Terminal Unit Device Class

Part 37: XFS MIB Device Specific Definitions - Sensors and Indicators Unit Device Class

Part 38: XFS MIB Device Specific Definitions - Camera Device Class

CWA 16926-5:2015 (E)

5

Part 39: XFS MIB Device Specific Definitions - Alarm Device Class

Part 40: XFS MIB Device Specific Definitions - Card Embossing Unit Class

Part 41: XFS MIB Device Specific Definitions - Cash-In Module Device Class

Part 42: Reserved for future use.

Part 43: XFS MIB Device Specific Definitions - Vendor Dependent Mode Device Class

Part 44: XFS MIB Application Management

Part 45: XFS MIB Device Specific Definitions - Card Dispenser Device Class

Part 46: XFS MIB Device Specific Definitions - Barcode Reader Device Class

Part 47: XFS MIB Device Specific Definitions - Item Processing Module Device Class

Parts 48 - 60 are reserved for future use.

Part 61: Application Programming Interface (API) - Migration from Version 3.20 (CWA 16374) to Version 3.30
(this CWA) - Service Provider Interface (SPI) - Programmer's Reference

Part 62: Printer and Scanning Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30
(this CWA) - Programmer's Reference

Part 63: Identification Card Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30
(this CWA) - Programmer's Reference

Part 64: Cash Dispenser Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30 (this
CWA) - Programmer's Reference

Part 65: PIN Keypad Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30 (this
CWA) - Programmer's Reference

Part 66: Check Reader/Scanner Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version
3.30 (this CWA) - Programmer's Reference

Part 67: Depository Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30 (this
CWA) - Programmer's Reference

Part 68: Text Terminal Unit Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30
(this CWA) - Programmer's Reference

Part 69: Sensors and Indicators Unit Device Class Interface - Migration from Version 3.20 (CWA 16374) to
Version 3.30 (this CWA) - Programmer's Reference

Part 70: Vendor Dependent Mode Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version
3.30 (this CWA) - Programmer's Reference

Part 71: Camera Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30 (this CWA) -
Programmer's Reference

Part 72: Alarm Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30 (this CWA) -
Programmer's Reference

Part 73: Card Embossing Unit Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30
(this CWA) - Programmer's Reference

Part 74: Cash-In Module Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30 (this
CWA) - Programmer's Reference

Part 75: Card Dispenser Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30 (this
CWA) - Programmer's Reference

Part 76: Barcode Reader Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30 (this
CWA) - Programmer's Reference

Part 77: Item Processing Module Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version
3.30 (this CWA) - Programmer's Reference

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a
complementary document, called Release Notes. The Release Notes contain clarifications and explanations on the
CWA specifications, which are not requiring functional changes. The current version of the Release Notes is
available online from http://www.cen.eu/work/areas/ict/ebusiness/pages/ws-xfs.aspx.

http://www.cen.eu/work/areas/ict/ebusiness/pages/ws-xfs.aspx

CWA 16926-5:2015 (E)

6

The information in this document represents the Workshop's current views on the issues discussed as of the date of
publication. It is furnished for informational purposes only and is subject to change without notice. CEN makes no
warranty, express or implied, with respect to this document.

The formal process followed by the Workshop in the development of the CEN Workshop Agreement has been
endorsed by the National Members of CEN but neither the National Members of CEN nor the CEN-CENELEC
Management Centre can be held accountable for the technical content of the CEN Workshop Agreement or possible
conflict with standards or legislation. This CEN Workshop Agreement can in no way be held as being an official
standard developed by CEN and its members.

The final review/endorsement round for this CWA was started on 2015-01-16 and was successfully closed on 2015-
03-19. The final text of this CWA was submitted to CEN for publication on 2015-06-19. The specification is
continuously reviewed and commented in the CEN Workshop on XFS. It is therefore expected that an update of the
specification will be published in due time as a CWA, superseding this revision 3.30.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights.
CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following
countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech
Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece,
Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal,
Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

Comments or suggestions from the users of the CEN Workshop Agreement are welcome and should be addressed
to the CEN-CENELEC Management Centre.

Revision History:

3.00 October 18, 2000 Initial release.

3.10 November 29, 2007 For a description of changes from version 3.00 to version 3.10
see the CDM 3.10 Migration document.

3.20 March 2, 2011 For a description of changes from version 3.10 to version 3.20
see the CDM 3.20 Migration document.

3.30 March 19, 2015 For a description of changes from version 3.20 to version 3.30
see the CDM 3.30 Migration document.

CWA 16926-5:2015 (E)

7

1. Introduction

1.1 Background to Release 3.30

The CEN XFS Workshop aims to promote a clear and unambiguous specification defining a multi-vendor software
interface to financial peripheral devices. The XFS (eXtensions for Financial Services) specifications are developed
within the CEN (European Committee for Standardization/Information Society Standardization System) Workshop
environment. CEN Workshops aim to arrive at a European consensus on an issue that can be published as a CEN
Workshop Agreement (CWA).

The CEN XFS Workshop encourages the participation of both banks and vendors in the deliberations required to
create an industry standard. The CEN XFS Workshop achieves its goals by focused sub-groups working
electronically and meeting quarterly.

Release 3.30 of the XFS specification is based on a C API and is delivered with the continued promise for the
protection of technical investment for existing applications. This release of the specification extends the
functionality and capabilities of the existing devices covered by the specification, but it does not include any new
device classes. Notable enhancements include:

• Enhanced reporting of Shutter Jammed Status and a new Shutter Status event for CDM, CIM and
IPM.

• Addition of a Synchronize command for all device classes, in order to allow synchronized action
where necessary.

• Directional Guidance Light support.

• Addition of a CIM Deplete Command.

• Support for EMV Intelligent Contactless Readers.

• Support in PIN for Encrypting Touch Screen.

• PIN Authentication functionality.

• New PIN Encryption Protocols added for Chinese market.

• PIN TR34 standard supported.

1.2 XFS Service-Specific Programming

The service classes are defined by their service-specific commands and the associated data structures, error codes,
messages, etc. These commands are used to request functions that are specific to one or more classes of Service
Providers, but not all of them, and therefore are not included in the common API for basic or administration
functions.

When a service-specific command is common among two or more classes of Service Providers, the syntax of the
command is as similar as possible across all services, since a major objective of XFS is to standardize function
codes and structures for the broadest variety of services. For example, using the WFSExecute function, the
commands to read data from various services are as similar as possible to each other in their syntax and data
structures.

In general, the specific command set for a service class is defined as a superset of the specific capabilities likely to
be provided by the developers of the services of that class; thus any particular device will normally support only a
subset of the defined command set.

There are three cases in which a Service Provider may receive a service-specific command that it does not support:

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor
implementation of that service does not support it, and the unsupported capability is not considered to be
fundamental to the service. In this case, the Service Provider returns a successful completion, but does no operation.
An example would be a request from an application to turn on a control indicator on a passbook printer; the Service
Provider recognizes the command, but since the passbook printer it is managing does not include that indicator, the
Service Provider does no operation and returns a successful completion to the application.

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor

CWA 16926-5:2015 (E)

8

implementation of that service does not support it, and the unsupported capability is considered to be fundamental
to the service. In this case, a WFS_ERR_UNSUPP_COMMAND error is returned to the calling application. An
example would be a request from an application to a cash dispenser to dispense coins; the Service Provider
recognizes the command but, since the cash dispenser it is managing dispenses only notes, returns this error.

The requested capability is not defined for the class of Service Providers by the XFS specification. In this case, a
WFS_ERR_INVALID_COMMAND error is returned to the calling application.

This design allows implementation of applications that can be used with a range of services that provide differing
subsets of the functionalities that are defined for their service class. Applications may use the WFSGetInfo and
WFSAsyncGetInfo commands to inquire about the capabilities of the service they are about to use, and modify
their behavior accordingly, or they may use functions and then deal with WFS_ERR_UNSUPP_COMMAND error
returns to make decisions as to how to use the service.

CWA 16926-5:2015 (E)

9

2. Cash Dispensers

This specification describes the functionality of an XFS compliant Cash Dispenser Module (CDM) Service
Provider. It defines the service-specific commands that can be issued to the Service Provider using the
WFSGetInfo, WFSAsyncGetInfo, WFSExecute and WFSAsyncExecute functions.

Persistent values are maintained through power failures, open sessions, close session and system resets.

This specification covers the dispensing of items. An “item” is defined as any media that can be dispensed and
includes coupons, documents, bills and coins. However, if coins and bills are both to be dispensed separate Service
Providers must be implemented for each.

All currency parameters in this specification are expressed as a quantity of minimum dispense units, as defined in
the description of the WFS_INF_CDM_CURRENCY_EXP command.

There are two types of CDM: Self-Service CDM and Teller CDM. A Self-Service CDM operates in an automated
environment, while a Teller CDM has an operator present. The functionality provided by the following commands
is only applicable to a Teller CDM:

WFS_CMD_CDM_SET_TELLER_INFO
WFS_INF_CDM_TELLER_INFO

It is possible for the CDM to be part of a compound device with the Cash-In Module (CIM). This CIM\CDM
combination is referred to throughout this specification as a “Cash Recycler”. For details of the CIM interface see
[Ref. 3].

If the device is a Cash Recycler then, if cash unit exchanges are required on both interfaces, the exchanges cannot
be performed concurrently. An exchange on one interface must be complete (the
WFS_CMD_CDM_END_EXCHANGE must have completed) before an exchange can start on the other interface.
The WFS_ERR_CDM_EXCHANGEACTIVE error code will be returned if the correct sequence is not adhered to.

The CIM interface can be used for all exchange operations on recycle devices, and the CIM interface should be
used if the device has recycle units of multiple currencies and/or denominations (including multiple note identifiers
associated with the same denomination).

The event WFS_SRVE_CDM_COUNTS_CHANGED will be posted if an operation on the CIM interface affects
the cash unit counts which are available through the CDM interface.

The following commands on the CIM interface may affect the CDM counts:

WFS_CMD_CIM_CASH_IN
 WFS_CMD_CIM_CASH_IN_END
 WFS_CMD_CIM_CASH_IN_ROLLBACK
 WFS_CMD_CIM_RETRACT
 WFS_CMD_CIM_SET_CASH_IN_UNIT_INFO
 WFS_CMD_CIM_END_EXCHANGE
 WFS_CMD_CIM_RESET
 WFS_CMD_CIM_REPLENISH
 WFS_CMD_CIM_CASH_UNIT_COUNT

The following applies when a blacklist of items is supported via the WFS_INF_CDM_GET_BLACKLIST and
WFS_CMD_CDM_SET_BLACKLIST command. If a blacklisted item is detected the device will classify the item
as a level 2 banknote and will handle the item automatically according to the local country specific note handling
standard or legislation. A WFS_EXEE_CDM_INPUT_P6 event will be sent if a blacklisted banknote is detected.

The Blacklist functionality can use a mask to specify serial numbers. The mask is defined as follows: A '?' character
(0x003F) is used to represent a wildcard for a single Unicode character, and a '*' character (0x002A) is used to
represent a wildcard for a single or multiple Unicode character.

For example, “S8H9??16?4” would represent a match for the serial numbers “S8H9231654” and “S8H9761684”. A
mask of “HD90*2” would be used in order to match serial numbers that begin with “HD90” and end with “2”, for
example “HD9028882”, “HD9083276112”. Note that the blacklist mask can only use one asterisk, and if a real
character is required then it must be preceded by a backslash, for example: '\\' for a backslash, '*' for an asterisk or
'\?' for a question mark.

CWA 16926-5:2015 (E)

10

3. References

1. XFS Application Programming Interface (API)/Service Provider Interface (SPI), Programmer’s Reference,
Revision 3.30
2. ISO 4217 at http://www.iso.org
3. XFS Cash-In Module Device Class Interface, Programmer’s Reference, Revision 3.30

http://www.iso.org/

CWA 16926-5:2015 (E)

11

4. Info Commands

4.1 WFS_INF_CDM_STATUS

Description This command is used to obtain the status of the CDM. It may also return vendor-specific status
information.

Input Param None.

Output Param LPWFSCDMSTATUS lpStatus;

typedef struct _wfs_cdm_status
 {
 WORD fwDevice;
 WORD fwSafeDoor;
 WORD fwDispenser;
 WORD fwIntermediateStacker;
 LPWFSCDMOUTPOS *lppPositions;
 LPSTR lpszExtra;
 DWORD dwGuidLights[WFS_CDM_GUIDLIGHTS_SIZE];
 WORD wDevicePosition;
 USHORT usPowerSaveRecoveryTime;
 WORD wAntiFraudModule;
 } WFSCDMSTATUS, *LPWFSCDMSTATUS;

fwDevice
Supplies the state of the CDM. However, an fwDevice status of WFS_CDM_DEVONLINE does
not necessarily imply that dispensing can take place: the value of the fwDispenser field must be
taken into account and - for some vendors - the state of the safe door (fwSafeDoor) may also be
relevant. The state of the CDM will have one of the following values:

Value Meaning
WFS_CDM_DEVONLINE The device is online. This is returned when

the dispenser is present and operational.
WFS_CDM_DEVOFFLINE The device is offline (e.g. the operator has

taken the device offline by turning a switch).
WFS_CDM_DEVPOWEROFF The device is powered off or physically not

connected.
WFS_CDM_DEVNODEVICE The device is not intended to be there, e.g.

this type of self service machine does not
contain such a device or it is internally not
configured.

WFS_CDM_DEVHW ERROR The device is inoperable due to a hardware
error.

WFS_CDM_DEVUSERERROR The device is present but a person is
preventing proper device operation.

WFS_CDM_DEVBUSY The device is busy and unable to process an
execute command at this time.

WFS_CDM_DEVFRAUDATTEMPT The device is present but is inoperable
because it has detected a fraud attempt.

WFS_CDM_DEVPOTENTIALFRAUD The device has detected a potential fraud
attempt and is capable of remaining in
service. In this case the application should
make the decision as to whether to take the
device offline.

fwSafeDoor
Supplies the state of the safe door as one of the following values:

Value Meaning
WFS_CDM_DOORNOTSUPPORTED Physical device has no safe door or safe door

state reporting is not supported.
WFS_CDM_DOOROPEN Safe door is open.
WFS_CDM_DOORCLOSED Safe door is closed.

CWA 16926-5:2015 (E)

12

WFS_CDM_DOORUNKNOWN Due to a hardware error or other condition,
the state of the safe door cannot be
determined.

fwDispenser
Supplies the state of the dispenser’s logical cash units as one of the following values:

Value Meaning
WFS_CDM_DISPOK All cash units present are in a good state.
WFS_CDM_DISPCUSTATE One or more of the cash units is in a low,

empty, inoperative or manipulated condition.
Items can still be dispensed from at least one
of the cash units.

WFS_CDM_DISPCUSTOP Due to a cash unit failure dispensing is
impossible. No items can be dispensed
because all of the cash units are in an empty,
inoperative or manipulated condition. This
state may also occur when a reject/retract
cash unit is full or no reject/retract cash unit
is present, or when an application lock is set
on every cash unit.

WFS_CDM_DISPCUUNKNOWN Due to a hardware error or other condition,
the state of the cash units cannot be
determined.

fwIntermediateStacker
Supplies the state of the intermediate stacker. These bills are typically present on the intermediate
stacker as a result of a retract operation or because a dispense has been performed without a
subsequent present. Possible values for this field are:

Value Meaning
WFS_CDM_ISEMPTY The intermediate stacker is empty.
WFS_CDM_ISNOTEMPTY The intermediate stacker is not empty. The

items have not been in customer access.
WFS_CDM_ISNOTEMPTYCUST The intermediate stacker is not empty. The

items have been in customer access. If the
device is a recycler then the items on the
intermediate stacker may be there as a result
of a previous cash-in operation.

WFS_CDM_ISNOTEMPTYUNK The intermediate stacker is not empty. It is
not known if the items have been in
customer access.

WFS_CDM_ISUNKNOWN Due to a hardware error or other condition,
the state of the intermediate stacker cannot
be determined.

WFS_CDM_ISNOTSUPPORTED The physical device has no intermediate
stacker.

lppPositions
Pointer to a NULL-terminated array of pointers to WFSCDMOUTPOS structures. There is one
structure for each position to which items can be dispensed or presented:

typedef struct _wfs_cdm_position
 {
 WORD fwPosition;
 WORD fwShutter;
 WORD fwPositionStatus;
 WORD fwTransport;
 WORD fwTransportStatus;
 WORD fwJammedShutterPosition;
 } WFSCDMOUTPOS, *LPWFSCDMOUTPOS;

fwPosition
Supplies the output position as one of the following values:

Value Meaning
WFS_CDM_POSLEFT Left output position.

CWA 16926-5:2015 (E)

13

WFS_CDM_POSRIGHT Right output position.
WFS_CDM_POSCENTER Center output position.
WFS_CDM_POSTOP Top output position.
WFS_CDM_POSBOTTOM Bottom output position.
WFS_CDM_POSFRONT Front output position.
WFS_CDM_POSREAR Rear output position.

fwShutter
Supplies the state of the shutter as one of the following values:

Value Meaning
WFS_CDM_SHTCLOSED The shutter is operational and is closed.
WFS_CDM_SHTOPEN The shutter is operational and is open.
WFS_CDM_SHTJAMMED The shutter is jammed and is not

operational. The field
fwJammedShutterPosition provides the
positional state of the shutter.

WFS_CDM_SHTUNKNOWN Due to a hardware error or other
condition, the state of the shutter cannot
be determined.

WFS_CDM_SHTNOTSUPPORTED The physical device has no shutter or
shutter state reporting is not supported.

fwPositionStatus
Returns information regarding items which may be at the output position. If the device is a
recycler it is possible that the output position will not be empty due to a previous cash-in
operation. The possible values of this field are:

Value Meaning
WFS_CDM_PSEMPTY The output position is empty.
WFS_CDM_PSNOTEMPTY The output position is not empty.
WFS_CDM_PSUNKNOWN Due to a hardware error or other

condition, the state of the output position
cannot be determined.

WFS_CDM_PSNOTSUPPORTED The device is not capable of reporting
whether or not items are at the output
position.

fwTransport
Supplies the state of the transport mechanism as one of the following values:

Value Meaning
WFS_CDM_TPOK The transport is in a good state.
WFS_CDM_TPINOP The transport is inoperative due to a

hardware failure or media jam.
WFS_CDM_TPUNKNOWN Due to a hardware error or other

condition the state of the transport cannot
be determined.

WFS_CDM_TPNOTSUPPORTED The physical device has no transport or
transport state reporting is not supported.

fwTransportStatus
Returns information regarding items which may be on the transport. If the device is a recycler
device it is possible that the transport will not be empty due to a previous cash-in operation.
The possible values of this field are:

Value Meaning
WFS_CDM_TPSTATEMPTY The transport is empty.
WFS_CDM_TPSTATNOTEMPTY The transport is not empty.
WFS_CDM_TPSTATNOTEMPTYCUST Items which a customer has had access to

are on the transport.
WFS_CDM_TPSTATNOTEMPTY_UNK Due to a hardware error or other

condition it is not known whether there
are items on the transport.

CWA 16926-5:2015 (E)

14

WFS_CDM_TPSTATNOTSUPPORTED The device is not capable of reporting
whether items are on the transport.

fwJammedShutterPosition
Returns information regarding the position of the jammed shutter. The possible values of this
field are:

Value Meaning
WFS_CDM_SHUTTERPOS_NOTSUPPORTED The physical device has no shutter or

the reporting of the position of a
jammed shutter is not supported.

WFS_CDM_SHUTTERPOS_NOTJAMMED The shutter is not jammed.
WFS_CDM_SHUTTERPOS_OPEN The shutter is jammed, but fully open.
WFS_CDM_SHUTTERPOS_PARTIALLY_OPEN The shutter is jammed, but partially

open.
WFS_CDM_SHUTTERPOS_CLOSED The shutter is jammed, but fully

closed.
WFS_CDM_SHUTTERPOS_UNKNOW N The position of the shutter is

unknown.

lpszExtra
Pointer to a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null
characters.

dwGuidLights [...]
Specifies the state of the guidance light indicators. The elements of this array can be accessed by
using the predefined index values specified for the dwGuidLights [] field in the capabilities.
Vendor specific guidance lights are defined starting from the end of the array. The maximum
guidance light index is WFS_CDM_GUIDLIGHTS_MAX.

Specifies the state of the guidance light indicator as
WFS_CDM_GUIDANCE_NOT_AVAILABLE, WFS_CDM_GUIDANCE_OFF or a
combination of the following flags consisting of one type B, optionally one type C and optionally
type D.

Value Meaning Type
WFS_CDM_GUIDANCE_NOT_AVAILABLE The status is not available. A
WFS_CDM_GUIDANCE_OFF The light is turned off. A
WFS_CDM_GUIDANCE_SLOW_FLASH The light is blinking slowly. B
WFS_CDM_GUIDANCE_MEDIUM_FLASH The light is blinking medium B

frequency.
WFS_CDM_GUIDANCE_QUICK_FLASH The light is blinking quickly. B
WFS_CDM_GUIDANCE_CONTINUOUS The light is turned on B

continuous (steady).
WFS_CDM_GUIDANCE_RED The light is red. C
WFS_CDM_GUIDANCE_GREEN The light is green. C
WFS_CDM_GUIDANCE_YELLOW The light is yellow. C
WFS_CDM_GUIDANCE_BLUE The light is blue. C
WFS_CDM_GUIDANCE_CYAN The light is cyan. C
WFS_CDM_GUIDANCE_MAGENTA The light is magenta. C
WFS_CDM_GUIDANCE_WHITE The light is white. C
WFS_CDM_GUIDANCE_EXIT The light is in the exit state. D

wDevicePosition
Specifies the device position. The device position value is independent of the fwDevice value, e.g.
when the device position is reported as WFS_CDM_DEVICENOTINPOSITION, fwDevice can
have any of the values defined above (including WFS_CDM_DEVONLINE or
WFS_CDM_DEVOFFLINE). If the device is not in its normal operating position (i.e.
WFS_CDM_DEVICEINPOSITION) then media may not be presented through the normal
customer interface. This value is one of the following values:

CWA 16926-5:2015 (E)

15

Value Meaning
WFS_CDM_DEVICEINPOSITION The device is in its normal operating

position, or is fixed in place and cannot be
moved.

WFS_CDM_DEVICENOTINPOSITION The device has been removed from its
normal operating position.

WFS_CDM_DEVICEPOSUNKNOWN Due to a hardware error or other condition,
the position of the device cannot be
determined.

WFS_CDM_DEVICEPOSNOTSUPP The physical device does not have the
capability of detecting the position.

usPowerSaveRecoveryTime
Specifies the actual number of seconds required by the device to resume its normal operational
state from the current power saving mode. This value is zero if either the power saving mode has
not been activated or no power save control is supported.

wAntiFraudModule
Specifies the state of the anti-fraud module as one of the following values:

Value Meaning
WFS_CDM_AFMNOTSUPP No anti-fraud module is available.
WFS_CDM_AFMOK Anti-fraud module is in a good state and no

foreign device is detected.
WFS_CDM_AFMINOP Anti-fraud module is inoperable.
WFS_CDM_AFMDEVICEDETECTED Anti-fraud module detected the presence of a

foreign device.
WFS_CDM_AFMUNKNOWN The state of the anti-fraud module cannot be

determined.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which rely on the lpszExtra field may not be device or vendor-independent.

In the case where communication with the device has been lost, the fwDevice field will report
WFS_CDM_DEVPOWEROFF when the device has been removed or
WFS_CDM_DEVHW ERROR if the communications are unexpectedly lost. All other fields
should contain a value based on the following rules and priority:

1. Report the value as unknown.

2. Report the value as a general h/w error.

3. Report the value as the last known value.

CWA 16926-5:2015 (E)

16

4.2 WFS_INF_CDM_CAPABILITIES

Description This command retrieves the capabilities of the CDM. It may also return vendor specific capability
information. The intermediate stacker and the transport are treated as separate areas. Some
devices may have the capability to move items from the cash units to the intermediate stacker
while there are items on the transport. Similarly some devices may be able to retract items to the
transport or the cash units while there are items on the intermediate stacker.

Input Param None.

Output Param LPWFSCDMCAPS lpCaps;
typedef struct _wfs_cdm_caps
 {
 WORD wClass;
 WORD fwType;
 WORD wMaxDispenseItems;
 BOOL bCompound;
 BOOL bShutter;
 BOOL bShutterControl;
 WORD fwRetractAreas;
 WORD fwRetractTransportActions;
 WORD fwRetractStackerActions;
 BOOL bSafeDoor;
 BOOL bCashBox;
 BOOL bIntermediateStacker;
 BOOL bItemsTakenSensor;
 WORD fwPositions;
 WORD fwMoveItems;
 WORD fwExchangeType;
 LPSTR lpszExtra;
 DWORD dwGuidLights[WFS_CDM_GUIDLIGHTS_SIZE];
 BOOL bPowerSaveControl;
 BOOL bPrepareDispense;
 BOOL bAntiFraudModule;
 DWORD dwItemInfoTypes;
 BOOL bBlacklist;
 LPDWORD lpdwSynchronizableCommands;
 } WFSCDMCAPS, *LPWFSCDMCAPS;

wClass
Specifies the logical service class as WFS_SERVICE_CLASS_CDM.

fwType
Supplies the type of CDM as one of the following values:

Value Meaning
WFS_CDM_TELLERBILL The CDM is a Teller Bill Dispenser.
WFS_CDM_SELFSERVICEBILL The CDM is a Self-Service Bill Dispenser.
WFS_CDM_TELLERCOIN The CDM is a Teller Coin Dispenser.
WFS_CDM_SELFSERVICECOIN The CDM is a Self-Service Coin Dispenser.

wMaxDispenseItems
Supplies the maximum number of items that can be dispensed in a single dispense operation. If no
limit applies this value will be zero - in this case, if an attempt is made to dispense more items
than the hardware limitations will allow, the Service Provider will implement the dispense as a
series of sub-dispense operations (see section Sub-Dispensing Command Flow).

bCompound
Specifies whether the CDM is part of a compound device. If the CDM is part of a compound
device with a CIM then this combination can be referred to as a recycler. In this case, no
information on cash-in cash units will be supplied via the CDM interface. The CDM interface will
however supply information on shared retract or reject cash units and recycle cash units.

bShutter
Specifies whether or not the commands WFS_CMD_CDM_OPEN_SHUTTER and
WFS_CMD_CDM_CLOSE_SHUTTER are supported.

CWA 16926-5:2015 (E)

17

bShutterControl
If set to TRUE the shutter is controlled implicitly by the Service Provider. If set to FALSE the
shutter must be controlled explicitly by the application using the
WFS_CMD_CDM_OPEN_SHUTTER and the WFS_CMD_CDM_CLOSE_SHUTTER
commands. This field is always set to TRUE if the device has no shutter. This field applies to all
shutters and all output positions.

fwRetractAreas
Specifies the area to which items may be retracted. If the device does not have a retract capability
this field will be WFS_CDM_RA_NOTSUPP. Otherwise this field will be set to a combination of
the following flags:

Value Meaning
WFS_CDM_RA_RETRACT The items may be retracted to a retract cash

unit.
WFS_CDM_RA_TRANSPORT The items may be retracted to the transport.
WFS_CDM_RA_STACKER The items may be retracted to the

intermediate stacker.
WFS_CDM_RA_REJECT The items may be retracted to a reject cash

unit.
WFS_CDM_RA_ITEMCASSETTE The items may be retracted to the item

cassettes, i.e. cassettes that can be dispensed
from.

fwRetractTransportActions
Specifies the actions which may be performed on items which have been retracted to the
transport. If the device does not have the capability to retract items to or from the transport this
value will be WFS_CDM_NOTSUPP. This field will be a combination of the following flags:

Value Meaning
WFS_CDM_PRESENT The items may be presented.
WFS_CDM_RETRACT The items may be retracted to a retract cash

unit.
WFS_CDM_REJECT The items may be retracted to a reject bin.
WFS_CDM_ITEMCASSETTE The items may be retracted to the item

cassettes, i.e. cassettes that can be dispensed
from.

fwRetractStackerActions
Specifies the actions which may be performed on items which have been retracted to the stacker.
If the device does not have the capability to retract items to or from the stacker this value will be
WFS_CDM_NOTSUPP. Otherwise it will be a combination of the following flags:

Value Meaning
WFS_CDM_PRESENT The items may be presented.
WFS_CDM_RETRACT The items may be retracted to a retract cash

unit.
WFS_CDM_REJECT The items may be retracted to a reject bin.
WFS_CDM_ITEMCASSETTE The items may be retracted to the item

cassettes, i.e. cassettes that can be dispensed
from.

bSafeDoor
Specifies whether or not the WFS_CMD_CDM_OPEN_SAFE_DOOR command is supported.

bCashBox
This field is only applicable to CDM types WFS_CDM_TELLERBILL and
WFS_CDM_TELLERCOIN. It specifies whether or not tellers have been assigned a cash box.

bIntermediateStacker
Specifies whether or not the CDM supports stacking items to an intermediate position before the
items are moved to the exit position. If this value is TRUE, the field bPresent of the
WFS_CMD_CDM_DISPENSE command can be set to FALSE.

CWA 16926-5:2015 (E)

18

bItemsTakenSensor
Specifies whether the CDM can detect when items at the exit position are taken by the user. If set
to TRUE the Service Provider generates an accompanying WFS_SRVE_CDM_ITEMSTAKEN
event. If set to FALSE this event is not generated. This field applies to all output positions.

fwPositions
Specifies the CDM output positions which are available as a combination of the following flags:

Value Meaning
WFS_CDM_POSLEFT The CDM has a left output position.
WFS_CDM_POSRIGHT The CDM has a right output position.
WFS_CDM_POSCENTER The CDM has a center output position.
WFS_CDM_POSTOP The CDM has a top output position.
WFS_CDM_POSBOTTOM The CDM has a bottom output position.
WFS_CDM_POSFRONT The CDM has a front output position.
WFS_CDM_POSREAR The CDM has a rear output position.

fwMoveItems
Specifies the CDM move item options which are available as a combination of the following
flags:

Value Meaning
WFS_CDM_FROMCU The CDM can dispense items from the cash

units to the intermediate stacker while there
are items on the transport.

WFS_CDM_TOCU The CDM can retract items to the cash units
while there are items on the intermediate
stacker.

WFS_CDM_TOTRANSPORT The CDM can retract items to the transport
while there are items on the intermediate
stacker.

WFS_CDM_TOSTACKER The CDM can dispense items from the cash
units to the intermediate stacker while there
are already items on the intermediate stacker
that have not been in customer access. Items
remaining on the stacker from a previous
dispense may first need to be rejected
explicitly by the application if they are not to
be presented.

fwExchangeType
Specifies the type of cash unit exchange operations supported by the CDM as a combination of
the following flags:

Value Meaning
WFS_CDM_EXBYHAND The CDM supports manual replenishment

either by filling the cash unit by hand or by
replacing the cash unit.

WFS_CDM_EXTOCASSETTES The CDM supports moving items from the
replenishment cash unit to another cash unit.

lpszExtra
Pointer to a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null
characters.

dwGuidLights [...]
Specifies which guidance lights are available. A number of guidance light positions are defined
below. Vendor specific guidance lights are defined starting from the end of the array. The
maximum guidance light index is WFS_CDM_GUIDLIGHTS_MAX.

In addition to supporting specific flash rates and colors, some guidance lights also have the
capability to show directional movement representing “exit”. The “exit” state gives the impression
of ejection from a device to a user and would be used for retrieving media from the device.

CWA 16926-5:2015 (E)

19

The elements of this array are specified as a combination of the following flags and indicate all of
the possible flash rates (type B) colors (type C) and directions (type D) that the guidance light
indicator is capable of handling. If the guidance light indicator only supports one color then no
value of type C is returned. If the guidance light indicator does not support direction then no value
of type D is returned. A value of WFS_CDM_GUIDANCE_NOT_AVAILABLE indicates that
the device has no guidance light indicator or the device controls the light directly with no
application control possible.

Value Meaning Type
WFS_CDM_GUIDANCE_NOT_AVAILABLE There is no guidance light control A

available at this position.
WFS_CDM_GUIDANCE_OFF The light can be off. B
WFS_CDM_GUIDANCE_SLOW_FLASH The light can blink slowly. B
WFS_CDM_GUIDANCE_MEDIUM_FLASH The light can blink medium B

frequency.
WFS_CDM_GUIDANCE_QUICK_FLASH The light can blink quickly. B
WFS_CDM_GUIDANCE_CONTINUOUS The light can be B

continuous (steady).
WFS_CDM_GUIDANCE_RED The light can be red. C
WFS_CDM_GUIDANCE_GREEN The light can be green. C
WFS_CDM_GUIDANCE_YELLOW The light can be yellow. C
WFS_CDM_GUIDANCE_BLUE The light can be blue. C
WFS_CDM_GUIDANCE_CYAN The light can be cyan. C
WFS_CDM_GUIDANCE_MAGENTA The light can be magenta. C
WFS_CDM_GUIDANCE_WHITE The light can be white. C
WFS_CDM_GUIDANCE_EXIT The light can be in the exit state. D

Each array index represents an output position in the CDM. The elements are accessed using the
following definitions for the index value:

Value Meaning
WFS_CDM_GUIDANCE_POSOUTNULL The default output position.
WFS_CDM_GUIDANCE_POSOUTLEFT Left output position.
WFS_CDM_GUIDANCE_POSOUTRIGHT Right output position.
WFS_CDM_GUIDANCE_POSOUTCENTER Center output position.
WFS_CDM_GUIDANCE_POSOUTTOP Top output position.
WFS_CDM_GUIDANCE_POSOUTBOTTOM Bottom output position.
WFS_CDM_GUIDANCE_POSOUTFRONT Front output position.
WFS_CDM_GUIDANCE_POSOUTREAR Rear output position.

bPowerSaveControl
Specifies whether power saving control is available. This can either be TRUE if available or
FALSE if not available.

bPrepareDispense
On some hardware it can take a significant amount of time for the dispenser to get ready to
dispense media. On this type of hardware the WFS_CMD_CDM_PREPARE_DISPENSE
command can be used to improve transaction performance. This flag indicates if the hardware
requires the application to use the WFS_CMD_CDM_PREPARE_DISPENSE command to
maximize transaction performance. If this flag is TRUE then the
WFS_CMD_CDM_PREPARE_DISPENSE command is supported and can be used to improve
transaction performance. If this flag is FALSE then the
WFS_CMD_CDM_PREPARE_DISPENSE command is not supported.

bAntiFraudModule
Specifies whether the anti-fraud module is available. This can either be TRUE if available or
FALSE if not available.

dwItemInfoTypes
Specifies the types of information that can be retrieved through the
WFS_INF_CDM_GET_ITEM_INFO command as a combination of the following flags:

Value Meaning
WFS_CDM_ITEM_SERIALNUMBER Serial Number of the item.
WFS_CDM_ITEM_SIGNATURE Signature of the item.
WFS_CDM_ITEM_IMAGEFILE Image file of the item.

CWA 16926-5:2015 (E)

20

bBlacklist
Specifies whether the device has the capability to maintain a blacklist of serial numbers as well as
supporting the associated operations. This can either be TRUE if the device has the capability or
FALSE if it does not.

lpdwSynchronizableCommands
Pointer to a zero-terminated list of DWORDs which contains the execute command IDs that can
be synchronized. If no execute command can be synchronized then this parameter will be NULL.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which rely on the lpszExtra field may not be device or vendor-independent.

CWA 16926-5:2015 (E)

21

4.3 WFS_INF_CDM_CASH_UNIT_INFO

Description This command is used to obtain information regarding the status and contents of the cash units in
the CDM.

Where a logical cash unit is configured but there is no corresponding physical cash unit currently
present in the device, information about the missing cash unit will still be returned in the lppList
field of the output parameter. The status of the cash unit will be reported as
WFS_CDM_STATCUMISSING.

It is possible that one logical cash unit may be associated with more than one physical cash unit.
In this case, the number of cash unit structures returned in lpCashUnitInfo will reflect the number
of logical cash units in the CDM. That is, if a system contains four physical cash units but two of
these are treated as one logical cash unit, lpCashUnitInfo will contain information about the three
logical cash units and a usCount of 3. Information about the physical cash unit(s) associated with
a logical cash unit is contained in the WFSCDMCASHUNIT structure representing the logical
cash unit.

It is also possible that multiple logical cash units may be associated with one physical cash unit.
This should only occur if the physical cash unit is capable of handling this situation, i.e. if it can
store multiple denominations and report meaningful count and replenishment information for each
denomination or if it can store retracted and rejected items as separate logical units and report
meaningful count and replenishment information for each of them. In this case the information
returned in lpCashUnitInfo will again reflect the number of logical cash units in the CDM.

Logical Types

A cash unit may have a logical type. A logical type is based on the value of the following fields of
the WFSCDMCASHUNIT structure:

lpszCashUnitName
usType
cCurrencyID
ulValues

A logical type of cash unit may be associated with more than one physical cash unit. The logical
type is distinct from the logical number (usNumber), i.e. usNumber does not refer to the logical
cassette type.

Counts

Item counts are typically based on software counts and therefore may not represent the actual
number of items in the cash unit. Persistent values are maintained through power failures, open
sessions, close session and system resets. If a cash unit is shared between the CDM and CIM
device class, then CDM operations will result in count changes in the CIM cash unit structure and
vice versa. All counts are reported consistently on both interfaces at all times.

On cash units that dispense items, if ulCount (on logical and physical cash units) reaches zero it
will not decrement further but will remain at zero. When ulCount reaches zero no further dispense
or denominate operations will be possible using that cash unit, unless the Service Provider
provides a configuration option to continue using cash units when ulCount reaches zero. The
default setting for any such configuration parameter must be to stop using the cash unit when this
value reaches zero. If the Service Provider is configured such that the cash unit can still be used
when ulCount reaches zero then WFS_CDM_STATCUEMPTY should not be generated when
ulCount reaches zero, rather it should be generated when all physical cash units associated with
the logical cash unit are physically empty. On recyclers, the Service Provider should not be
configured to keep using the cash unit when ulCount is zero if the value in ulCount is used by any
part of the application, as it may not be accurate. However, if the Service Provider is configured
to keep using the cash unit when ulCount reaches zero, then the number of notes in the cash unit
can be determined relative to ulInitialCount using ulDispensedCount, ulRetractedCount and the
CIM ulCashInCount, e.g. Number of Notes = ulInitialCount – ulDispensedCount +
ulRetractedCount + CIM::ulCashInCount.

Exchanges

If a physical cash unit is inserted (including removal followed by a reinsertion) when the device is
not in the exchange state the usStatus of the physical cash unit will be set to

CWA 16926-5:2015 (E)

22

WFS_CDM_STATCUMANIP and the values of the physical cash unit prior to its’ removal will
be returned in any subsequent WFS_INF_CDM_CASH_UNIT_INFO command. The physical
cash unit will not be used in any operation. The application must perform an exchange operation
specifying the new values for the physical cash unit in order to recover the situation.

On recycling and retract units the counts and status are consistently reported on both the CDM
and CIM interfaces. When a value is changed through an exchange on one interface it is also
changed on the other.

Recyclers

The CDM interface does not report cash-in only cash units but does report cash units which are
shared with the CIM, i.e. recycling cash units (WFS_CDM_TYPERECYCLING) and
reject/retract cash units (WFS_CDM_TYPEREJECTCASSETTE /
WFS_CDM_TYPERETRACTCASSETTE). The CIM interface reports all cash units of all types,
including those that can only be used by commands on the CDM interface.

Input Param None.

Output Param LPWFSCDMCUINFO lpCashUnitInfo;
typedef struct _wfs_cdm_cu_info
 {
 USHORT usTellerID;
 USHORT usCount;
 LPWFSCDMCASHUNIT *lppList;
 } WFSCDMCUINFO, *LPWFSCDMCUINFO;

usTellerID
This field is not used in this command and is always zero.

usCount
Specifies the number of cash unit structures returned.

lppList
Pointer to an array of pointers to WFSCDMCASHUNIT structures:

typedef struct _wfs_cdm_cashunit
 {
 USHORT usNumber;
 USHORT usType;
 LPSTR lpszCashUnitName;
 CHAR cUnitID[5];
 CHAR cCurrencyID[3];
 ULONG ulValues;
 ULONG ulInitialCount;
 ULONG ulCount;
 ULONG ulRejectCount;
 ULONG ulMinimum;
 ULONG ulMaximum;
 BOOL bAppLock;
 USHORT usStatus;
 USHORT usNumPhysicalCUs;
 LPWFSCDMPHCU *lppPhysical;
 ULONG ulDispensedCount;
 ULONG ulPresentedCount;
 ULONG ulRetractedCount;
 } WFSCDMCASHUNIT, *LPWFSCDMCASHUNIT;

usNumber
Index number of the cash unit structure. Each structure has a unique logical number starting
with a value of one (1) for the first structure, and incrementing by one for each subsequent
structure.

usType
Type of cash unit. Possible values are:

Value Meaning
WFS_CDM_TYPENA Not applicable. Typically means cash

unit is missing.

CWA 16926-5:2015 (E)

23

WFS_CDM_TYPEREJECTCASSETTE Reject cash unit. This type will also
indicate a combined reject/retract cash
unit.

WFS_CDM_TYPEBILLCASSETTE Cash unit containing bills.
WFS_CDM_TYPECOINCYLINDER Coin cylinder.
WFS_CDM_TYPECOINDISPENSER Coin dispenser as a whole unit.
WFS_CDM_TYPERETRACTCASSETTE Retract cash unit.
WFS_CDM_TYPECOUPON Cash unit containing coupons or

advertising material.
WFS_CDM_TYPEDOCUMENT Cash unit containing documents.
WFS_CDM_TYPEREPCONTAINER Replenishment container. A cash unit can

be refilled from a replenishment
container.

WFS_CDM_TYPERECYCLING Recycling cash unit. This unit is only
present when the device is a compound
device with a CIM.

lpszCashUnitName
A name which helps to identify the logical type of the cash unit. This is especially useful in
the case of cash units of type WFS_CDM_TYPEDOCUMENT where different documents can
have the same currency and value. For example, travelers checks and bank checks may have
the same currency and value but still need to be identifiable as different types of document.
Where this value is not relevant (e.g. in bill cash units) the pointer will be NULL. This value is
persistent.

cUnitID
The Cash Unit Identifier.

cCurrencyID
A three character array storing the ISO format [Ref. 2] Currency ID. This value will be an
array of three ASCII 0x20h characters for cash units which contain items of more than one
currency type or items to which currency is not applicable. If the usStatus field for this cash
unit is WFS_CDM_STATCUNOVAL it is the responsibility of the application to assign a
value to this field. This value is persistent.

ulValues
Supplies the value of a single item in the cash unit. This value is expressed in minimum
dispense units (see section WFS_INF_CDM_CURRENCY_EXP). If the cCurrencyID field
for this cash unit is an array of three ASCII 0x20h characters, then this field will contain zero.
If the usStatus field for this cash unit is WFS_CDM_STATCUNOVAL it is the responsibility
of the application to assign a value to this field. This value is persistent.

ulInitialCount
Initial number of items contained in the cash unit. This value is persistent.

ulCount
The meaning of this count depends on the type of cash unit. This value is persistent.

For all cash units except retract cash units (usType is not
WFS_CDM_TYPERETRACTCASSETTE) this value specifies the number of items inside all
the physical cash units associated with this cash unit.

For all dispensing cash units (usType is WFS_CDM_TYPEBILLCASSETTE,
WFS_CDM_TYPECOINCYLINDER, WFS_CDM_TYPECOINDISPENSER,
WFS_CDM_TYPECOUPON, WFS_CDM_TYPEDOCUMENT or
WFS_CDM_TYPERECYCLING), this value includes any items from the physical cash units
not yet presented to the customer. This count is only decremented when the items are either
known to be in customer access or successfully rejected.

If the cash unit is usable from the CIM interface (usType is WFS_CDM_TYPERECYCLING,
WFS_CDM_TYPERETRACTCASSETTE or WFS_CDM_TYPEREJECTCASSETTE) then
this value will be incremented as a result of a cash-in operation.

Note that for a reject cash unit (usType is WFS_CDM_TYPEREJECTCASSETTE), this value
is unreliable, since the typical reason for dumping items to the reject cash unit is a suspected
count failure.

CWA 16926-5:2015 (E)

24

For a retract cash unit (usType is WFS_CDM_TYPERETRACTCASSETTE) this value
specifies the number of retract operations (CDM commands, CIM commands and error
recoveries) which result in items entering the cash unit.

ulRejectCount
The number of items from this cash unit which are in the reject bin, and which have not been
accessible to a customer. This value may be unreliable, since the typical reason for dumping
items to the reject cash unit is a suspected pick failure. For reject and retract cash units
(usType is WFS_CDM_TYPEREJECTCASSETTE or
WFS_CDM_TYPERETRACTCASSETTE) this field does not apply and will be reported as
zero. This value is persistent.

ulMinimum
This field is not applicable to retract and reject cash units. For all other cash units, when
ulCount reaches this value the threshold event
WFS_USRE_CDM_CASHUNITTHRESHOLD (WFS_CDM_STATCULOW) will be
generated. If this value is non-zero then hardware sensors in the device do not trigger
threshold events. If this value is zero then hardware sensors will trigger threshold events if
bHardwareSensor is TRUE. This value is persistent.

ulMaximum
This field is only applicable to retract and reject cash units. When ulCount reaches this value
the threshold event WFS_USRE_CDM_CASHUNITTHRESHOLD
(WFS_CDM_STATCUHIGH) will be generated. If this value is non-zero then hardware
sensors in the device do not trigger threshold events. If this value is zero then hardware
sensors will trigger threshold events if bHardwareSensor is TRUE. This value is persistent.

bAppLock
This field does not apply to reject or retract cash units. If this value is TRUE items cannot be
dispensed from the cash unit. If this value is TRUE and the application attempts to dispense
from the cash unit a WFS_EXEE_CDM_CASHUNITERROR event will be generated and a
WFS_ERR_CDM_CASHUNITERROR code will be returned. This value is persistent.

usStatus
Supplies the status of the cash unit as one of the following values:

Value Meaning
WFS_CDM_STATCUOK The cash unit is in a good state.
WFS_CDM_STATCUFULL The cash unit is full. This value only

applies to cash units where usType is
WFS_CDM_TYPEREJECTCASSETTE
or WFS_CDM_TYPERETRACT-
CASSETTE.

WFS_CDM_STATCUHIGH The cash unit is almost full (i.e. reached
or exceeded the threshold defined by
ulMaximum). This value only applies to
cash units where usType is
WFS_CDM_TYPEREJECTCASSETTE
or WFS_CDM_TYPERETRACT-
CASSETTE.

WFS_CDM_STATCULOW The cash unit is almost empty (i.e.
reached or below the threshold defined
by ulMinimum). This value does not
apply to cash units where usType is
WFS_CDM_TYPEREJECTCASSETTE
or WFS_CDM_TYPERETRACT-
CASSETTE.

WFS_CDM_STATCUEMPTY The cash unit is empty, or insufficient
items in the cash unit are preventing
further dispense operations. This value
does not apply to cash units where
usType is
WFS_CDM_TYPEREJECTCASSETTE
or WFS_CDM_TYPERETRACT-
CASSETTE.

CWA 16926-5:2015 (E)

25

WFS_CDM_STATCUINOP The cash unit is inoperative.
WFS_CDM_STATCUMISSING The cash unit is missing.
WFS_CDM_STATCUNOVAL The values of the specified cash unit are

not available.
WFS_CDM_STATCUNOREF There is no reference value available for

the notes in this cash unit. The cash unit
has not been calibrated.

WFS_CDM_STATCUMANIP The cash unit has been inserted
(including removal followed by a
reinsertion) when the device was not in
the exchange state. This cash unit cannot
be dispensed from.

ulDispensedCount
The number of items dispensed from all the physical cash units associated with this cash unit.
This count is incremented when the items are removed from any of the associated physical
cash units. This count includes any items that were rejected during the dispense operation.
This field is always zero for cash units with a usType of
WFS_CDM_TYPEREJECTCASSETTE or WFS_CDM_TYPERETRACTCASSETTE. This
value is persistent.

ulPresentedCount
The number of items from all the physical cash units associated with this cash unit that have
been presented to the customer. This count is incremented when the items are presented to the
customer. If it is unknown if a customer has been presented with the items, then this count is
not updated. This field is always zero for cash units with a usType of
WFS_CDM_TYPEREJECTCASSETTE or WFS_CDM_TYPERETRACTCASSETTE. This
value is persistent.

ulRetractedCount
The number of items that have been accessible to a customer and retracted into all the physical
cash units associated with this cash unit. This value is persistent.

usNumPhysicalCUs
The number of physical cash unit structures returned in the following lppPhysical array. This
number must be at least 1.

lppPhysical
Pointer to an array of pointers to WFSCDMPHCU structures:

typedef struct _wfs_cdm_physicalcu
 {
 LPSTR lpPhysicalPositionName;
 CHAR cUnitID[5];
 ULONG ulInitialCount;
 ULONG ulCount;
 ULONG ulRejectCount;
 ULONG ulMaximum;
 USHORT usPStatus;
 BOOL bHardwareSensor;
 ULONG ulDispensedCount;
 ULONG ulPresentedCount;
 ULONG ulRetractedCount;
 } WFSCDMPHCU, *LPWFSCDMPHCU;

lpPhysicalPositionName
A name identifying the physical location of the cash unit within the CDM. This field can
be used by CDMs which are compound with a CIM to identify shared cash units.

cUnitID
A 5 character array uniquely identifying the physical cash unit.

ulInitialCount
Initial number of items contained in the cash unit. This value is persistent.

ulCount
As defined by the logical ulCount description but applies to a single physical cash unit, but
with the following exceptions:

CWA 16926-5:2015 (E)

26

This count does not include items dispensed but not yet presented.

On cash units belonging to logical cash units with usType set to
WFS_CDM_TYPERETRACTCASSETTE the physical count represents the number of
items, unless the device cannot count items during a retract, in which case this count will
be zero.

This value is persistent.

ulRejectCount
As defined by the logical ulRejectCount description but applies to a single physical cash
unit. This value is persistent.

ulMaximum
The maximum number of items the cash unit can hold. This is only for informational
purposes. No threshold event WFS_USRE_CDM_CASHUNITTHRESHOLD will be
generated. This value is persistent.

usPStatus
Supplies the status of the physical cash unit as one of the following values:

Value Meaning
WFS_CDM_STATCUOK The cash unit is in a good state.
WFS_CDM_STATCUFULL The cash unit is full. This value only

applies to cash units where usType is
WFS_CDM_TYPEREJECT-
CASSETTE or
WFS_CDM_TYPERETRACT-
CASSETTE.

WFS_CDM_STATCUHIGH The cash unit is almost full (reached
or exceeded threshold defined by
ulMaximum). This value only applies
to cash units where usType is
WFS_CDM_TYPEREJECT-
CASSETTE or
WFS_CDM_TYPERETRACT-
CASSETTE.

WFS_CDM_STATCULOW The cash unit is almost empty. This
value does not apply to cash units
where usType is WFS_CDM_TYPE-
REJECTCASSETTE or
WFS_CDM_TYPERETRACT-
CASSETTE.

WFS_CDM_STATCUEMPTY The cash unit is empty, or insufficient
items in the cash unit are preventing
further dispense operations. This
value does not apply to cash units
where usType is WFS_CDM_TYPE-
REJECTCASSETTE or
WFS_CDM_TYPERETRACT-
CASSETTE.

WFS_CDM_STATCUINOP The cash unit is inoperative.
WFS_CDM_STATCUMISSING The cash unit is missing. The cash

unit has been removed and is
physically not present in the machine.

WFS_CDM_STATCUNOVAL The values of the specified cash unit
are not available.

WFS_CDM_STATCUNOREF There is no reference value available
for the notes in this cash unit. The
cash unit has not been calibrated.

WFS_CDM_STATCUMANIP The cash unit has been inserted
(including removal followed by a
reinsertion) when the device was not
in the exchange state. This cash unit
cannot be dispensed from.

CWA 16926-5:2015 (E)

27

bHardwareSensor
Specifies whether or not threshold events can be generated based on hardware sensors in
the device. If this value is TRUE for any of the physical cash units related to a logical cash
unit then threshold events may be generated based on hardware sensors as opposed to
logical counts.

ulDispensedCount
As defined by the logical ulDispensedCount description but applies to a single physical
cash unit. This value is zero if the h/w does not support physical counts. This value is
persistent.

ulPresentedCount
As defined by the logical ulPresentedCount description but applies to a single physical
cash unit. This value is zero if the h/w does not support physical counts. This value is
persistent.

ulRetractedCount
As defined by the logical ulRetractedCount description but applies to a single physical
cash unit. This value is zero if the h/w does not support physical counts. This value is
persistent.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16926-5:2015 (E)

28

4.4 WFS_INF_CDM_TELLER_INFO

Description This command only applies to Teller CDMs. It allows the application to obtain counts for each
currency assigned to the teller. These counts represent the total amount of currency dispensed by
the teller in all transactions.

This command also enables the application to obtain the position assigned to each teller. If the
input parameter is NULL, this command will return information for all tellers and all currencies.
The teller information is persistent.

Input Param LPWFSCDMTELLERINFO lpTellerInfo;
typedef struct _wfs_cdm_teller_info
 {
 USHORT usTellerID;
 CHAR cCurrencyID[3];
 } WFSCDMTELLERINFO, *LPWFSCDMTELLERINFO;

usTellerID
Identification of the teller. If the value of usTellerID is not valid the error
WFS_ERR_CDM_INVALIDTELLERID is reported.

cCurrencyID
Three character ISO format currency identifier [Ref 2].

This field can be an array of three ASCII 0x20 characters. In this case information on all
currencies will be returned.

Output Param LPWFSCDMTELLERDETAILS *lppTellerDetails;

Pointer to a NULL-terminated array of pointers to WFSCDMTELLERDETAILS structures.
typedef struct _wfs_cdm_teller_details
 {
 USHORT usTellerID;
 ULONG ulInputPosition;
 WORD fwOutputPosition;
 LPWFSCDMTELLERTOTALS *lppTellerTotals;
 } WFSCDMTELLERDETAILS, *LPWFSCDMTELLERDETAILS;

usTellerID
Identification of the teller.

ulInputPosition
The input position assigned to the teller for cash entry. This is only for compatibility except when
the device is a compound device. The value is specified by one of the following values:

Value Meaning
WFS_CDM_POSNULL No position is assigned to the teller.
WFS_CDM_POSINLEFT Left position is assigned to the teller.
WFS_CDM_POSINRIGHT Right position is assigned to the teller.
WFS_CDM_POSINCENTER Center position is assigned to the teller.
WFS_CDM_POSINTOP Top position is assigned to the teller.
WFS_CDM_POSINBOTTOM Bottom position is assigned to the teller.
WFS_CDM_POSINFRONT Front position is assigned to the teller.
WFS_CDM_POSINREAR Rear position is assigned to the teller.

fwOutputPosition
The output position from which cash is presented to the teller. The value is specified by one of the
following values:

Value Meaning
WFS_CDM_POSNULL No position is assigned to the teller.
WFS_CDM_POSLEFT Left position is assigned to the teller.
WFS_CDM_POSRIGHT Right position is assigned to the teller.
WFS_CDM_POSCENTER Center position is assigned to the teller.
WFS_CDM_POSTOP Top position is assigned to the teller.
WFS_CDM_POSBOTTOM Bottom position is assigned to the teller.
WFS_CDM_POSFRONT Front position is assigned to the teller.

CWA 16926-5:2015 (E)

29

WFS_CDM_POSREAR Rear position is assigned to the teller.

lppTellerTotals
Pointer to a NULL-terminated array of pointers to WFSCDMTELLERTOTALS structures.

typedef struct _wfs_cdm_teller_totals
 {
 CHAR cCurrencyID[3];
 ULONG ulItemsReceived;
 ULONG ulItemsDispensed;
 ULONG ulCoinsReceived;
 ULONG ulCoinsDispensed;
 ULONG ulCashBoxReceived;
 ULONG ulCashBoxDispensed;
 } WFSCDMTELLERTOTALS, *LPWFSCDMTELLERTOTALS;

cCurrencyID
Three character ISO format currency identifier [Ref. 2].

ulItemsReceived
The total amount of items (other than coins) of the specified currency accepted. The amount is
expressed in minimum dispense units (see section WFS_INF_CDM_CURRENCY_EXP).

ulItemsDispensed
The total amount of items (other than coins) of the specified currency dispensed. The amount
is expressed in minimum dispense units (see section WFS_INF_CDM_CURRENCY_EXP).

ulCoinsReceived
The total amount of coin currency accepted. The amount is expressed in minimum dispense
units (see section WFS_INF_CDM_CURRENCY_EXP).

ulCoinsDispensed
The total amount of coin currency dispensed. The amount is expressed in minimum dispense
units (see section WFS_INF_CDM_CURRENCY_EXP).

ulCashBoxReceived
The total amount of cash box currency accepted. The amount is expressed in minimum
dispense units (see section WFS_INF_CDM_CURRENCY_EXP).

ulCashBoxDispensed
The total amount of cash box currency dispensed. The amount is expressed in minimum
dispense units (see section WFS_INF_CDM_CURRENCY_EXP).

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CDM_INVALIDCURRENCY Specified currency not currently available.
WFS_ERR_CDM_INVALIDTELLERID Invalid teller ID.

Comments None.

CWA 16926-5:2015 (E)

30

4.5 WFS_INF_CDM_CURRENCY_EXP

Description This command returns each exponent assigned to each currency known to the Service Provider.

Input Param None.

Output Param LPWFSCDMCURRENCYEXP *lppCurrencyExp;

Pointer to a NULL-terminated array of pointers to WFSCDMCURRENCYEXP structures:
typedef struct _wfs_cdm_currency_exp
 {
 CHAR cCurrencyID[3];
 SHORT sExponent;
 } WFSCDMCURRENCYEXP, *LPWFSCDMCURRENCYEXP;

cCurrencyID
Currency identifier in ISO 4217 format [Ref 2].

sExponent
Currency exponent in ISO 4217 format [Ref. 2].

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments For each currency ISO 4217 defines the currency identifier (a three character code) and a currency
unit (e.g. European Euro, Japanese Yen). In the interface defined by this specification, every
money amount is specified in terms of multiples of the minimum dispense unit, which is equal to
the currency unit times ten to the power of the currency exponent. Thus an amount parameter
relates to the actual cash amount as follows:

<cash_amount> = <money_amount_parameter> * 10^<sExponent>

Example #1 - Euro
Currency identifier is ‘EUR’
Currency unit is 1 Euro (= 100 Cent)

A Service Provider is developed for an ATM that can dispense coins down to one Cent. The
currency exponent (sExponent) is set to -2 (minus two), so the minimum dispense unit is one Cent
(1 * 10^-2 Euro); all amounts at the XFS interface are in Cent. Thus a money amount parameter
of 10050 is 100 Euro and 50 Cent.

Example #2 - Japan
Currency identifier is ‘JPY’
Currency unit is 1 Japanese Yen

A Service Provider is required to dispense a minimum amount of 1000 Yen. The currency
exponent (sExponent) is set to +3 (plus three), so the minimum dispense unit is 1000 Yen; all
amounts at the XFS interface are in multiples of 1000 Yen. Thus an amount parameter of 15 is
15000 Yen.

CWA 16926-5:2015 (E)

31

4.6 WFS_INF_CDM_MIX_TYPES

Description This command is used to obtain a list of supported mix algorithms and available house mix tables.

Input Param None.

Output Param LPWFSCDMMIXTYPE *lppMixTypes;

Pointer to a NULL-terminated array of pointers to WFSCDMMIXTYPE structures:
typedef struct _wfs_cdm_mix_type
 {
 USHORT usMixNumber;
 USHORT usMixType;
 USHORT usSubType;
 LPSTR lpszName;
 } WFSCDMMIXTYPE, *LPWFSCDMMIXTYPE;

usMixNumber
Number identifying the mix algorithm or the house mix table. This number can be passed to the
WFS_INF_CDM_MIX_TABLE, WFS_CMD_CDM_DISPENSE and
WFS_CMD_CDM_DENOMINATE commands.

usMixType
Specifies whether the mix type is an algorithm or a house mix table. Possible values are:

Value Meaning
WFS_CDM_MIXALGORITHM Mix algorithm.
WFS_CDM_MIXTABLE Mix table.

usSubType
Contains a vendor-defined number that identifies the type of algorithm. Individual vendor-defined
mix algorithms are defined above hexadecimal 7FFF. Mix algorithms which are provided by the
Service Provider are in the range hexadecimal 8000 - 8FFF. Application defined mix algorithms
start at hexadecimal 9000. All numbers below 8000 hexadecimal are reserved. If usMixType is
WFS_CDM_MIXTABLE, this value will be zero. Predefined values are:

Value Meaning
WFS_CDM_MIX_MINIMUM_NUMBER_OF_BILLS

Select a mix requiring the minimum possible
number of items.

WFS_CDM_MIX_EQUAL_EMPTYING_OF_CASH_UNITS
The denomination is selected based upon
criteria which ensure that over the course of
its operation the CDM cash units will empty
as far as possible at the same rate and will
therefore go LOW and then EMPTY at
approximately the same time.

WFS_CDM_MIX_MAXIMUM_NUMBER_OF_CASH_UNITS
The denomination will be selected based
upon criteria which ensures the maximum
number of different logical cash units are
used.

lpszName
Points to the name of the table/algorithm used.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16926-5:2015 (E)

32

4.7 WFS_INF_CDM_MIX_TABLE

Description This command is used to obtain the house mix table specified by the supplied mix number.

Input Param LPUSHORT lpusMixNumber;

lpusMixNumber
Pointer to the number of the requested house mix table.

Output Param LPWFSCDMMIXTABLE lpMixTable;
typedef struct _wfs_cdm_mix_table
 {
 USHORT usMixNumber;
 LPSTR lpszName;
 USHORT usRows;
 USHORT usCols;
 LPULONG lpulMixHeader;
 LPWFSCDMMIXROW *lppMixRows;
 } WFSCDMMIXTABLE, *LPWFSCDMMIXTABLE;

usMixNumber
Number identifying the house mix table.

lpszName
Points to the name of the house mix table.

usRows
Number of rows in the house mix table. There is at least one row for each distinct total amount to
be denominated. If there is more than one row for an amount the first row is taken that is
dispensable according to the current status of the cash units.

usCols
Number of columns in the house mix table. There is one column for each distinct item value
included in the mix.

lpulMixHeader
Pointer to an array of length usCols of unsigned longs; each element defines the value of the item
corresponding to its respective column (see section WFS_INF_CDM_CURRENCY_EXP).

lppMixRows
Pointer to an array (of length usRows) of pointers to WFSCDMMIXROW structures:

typedef struct _wfs_cdm_mix_row
 {
 ULONG ulAmount;
 LPUSHORT lpusMixture;
 } WFSCDMMIXROW, *LPWFSCDMMIXROW;

ulAmount
Amount denominated by this mix row (see section WFS_INF_CDM_CURRENCY_EXP).

lpusMixture
Pointer to a mix row, an array of length usCols of USHORTs; each element defines the
quantity of each item denomination in the mix used in the denomination of ulAmount.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CDM_INVALIDMIXNUMBER The lpusMixNumber parameter does not

correspond to a defined mix table.

Comments None.

CWA 16926-5:2015 (E)

33

4.8 WFS_INF_CDM_PRESENT_STATUS

Description This command is used to obtain the status of the most recent attempt to dispense and/or present
items to the customer. The items may have been dispensed and/or presented as a result of the
WFS_CMD_CDM_PRESENT or WFS_CMD_CDM_DISPENSE command. This status is not
updated as a result of any other command that can dispense/present items.

This value is persistent and is valid until the next time an attempt is made to present or dispense
items to the customer.

The denominations reported by this command may not accurately reflect the operation if the cash
units have been re-configured (e.g. if the values associated with a cash unit are changed, or new
cash units are configured).

Input Param LPWORD lpfwPosition;

lpfwPosition
Pointer to the output position the items were presented or dispensed to as one of the following
values:

Value Meaning
WFS_CDM_POSNULL The items were presented according to the

default configuration.
WFS_CDM_POSLEFT The items were presented to the left output

position.
WFS_CDM_POSRIGHT The items were presented to the right output

position.
WFS_CDM_POSCENTER The items were presented to the center

output position.
WFS_CDM_POSTOP The items were presented to the top output

position.
WFS_CDM_POSBOTTOM The items were presented to the bottom

output position.
WFS_CDM_POSFRONT The items were presented to the front output

position.
WFS_CDM_POSREAR The items were presented to the rear output

position.

Output Param LPWFSCDMPRESENTSTATUS lpPresentStatus;
typedef struct _wfs_cdm_present_status
 {
 LPWFSCDMDENOMINATION lpDenomination;
 WORD wPresentState;
 LPSTR lpszExtra;
 } WFSCDMPRESENTSTATUS, *LPWFSCDMPRESENTSTATUS;

lpDenomination
Pointer to a WFSCDMDENOMINATION structure which contains the amount dispensed and the
number of items dispensed from each cash unit. For a description of the
WFSCDMDENOMINATION structure see the definition of the command
WFS_CMD_CDM_DENOMINATE. Where the capability fwMoveItems reports
WFS_CDM_TOSTACKER this value is cumulative across a series of
WFS_CMD_CDM_DISPENSE calls that add additional items to the stacker.

Where mixed currencies were dispensed the ulAmount field in the returned denomination
structure will be zero and the cCurrencyID field will be set to three ASCII 0x20 characters.

wPresentState
Supplies the status of the last dispense or present operation. Possible values are:

Value Meaning
WFS_CDM_PRESENTED The items were presented. This status is set

as soon as the customer has access to the
items.

WFS_CDM_NOTPRESENTED The customer has not had access to the
items.

CWA 16926-5:2015 (E)

34

WFS_CDM_UNKNOWN It is not known if the customer had access to
the items.

lpszExtra
Pointer to a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null
characters.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CDM_UNSUPPOSITION The specified output position is not

supported.

Comments None.

CWA 16926-5:2015 (E)

35

4.9 WFS_INF_CDM_GET_ITEM_INFO

Description This command is used to get information about the number of level 1 / level 2 / level 3 / level 4
notes dispensed and the number of level 2 / level 3 / level 4 signatures created. This information is
available from the point where the first WFS_EXEE_CDM_INFO_AVAILABLE event is
generated until one of the following CDM commands is executed:

WFS_CMD_CDM_DISPENSE, WFS_CMD_CDM_COUNT, WFS_CMD_CDM_PRESENT,
WFS_CMD_CDM_RETRACT, WFS_CMD_CDM_REJECT,
WFS_CMD_CDM_OPEN_SHUTTER, WFS_CMD_CDM_CLOSE_SHUTTER,
WFS_CMD_CDM_RESET, WFS_CMD_CDM_START_EXCHANGE,
WFS_CMD_CDM_END_EXCHANGE, WFS_CMD_CDM_CALIBRATE_CASH_UNIT,
WFS_CMD_CDM_TEST_CASH_UNITS.

Additionally for a recycler, the following CIM commands will also invalidate the information:

WFS_CMD_CIM_CASH_IN_START, WFS_CMD_CIM_CASH_IN,
WFS_CMD_CIM_CASH_IN_ROLLBACK, WFS_CMD_CIM_CASH_IN_END,
WFS_CMD_CIM_RETRACT, WFS_CMD_CIM_RESET,
WFS_CMD_CIM_START_EXCHANGE, WFS_CMD_CIM_END_EXCHANGE,
WFS_CMD_CIM_CREATE_P6_SIGNATURE, WFS_CMD_CIM_REPLENISH,
WFS_CMD_CIM_CASH_UNIT_COUNT.

This command is used to retrieve the required information on an individual item basis.
Applications should loop retrieving the information for each index and for each level reported
with the WFS_EXEE_CDM_INFO_AVAILABLE event.

Input Param LPWFSCDMGETITEMINFO lpGetItemInfo;

typedef struct _wfs_cdm_get_item_info
 {
 USHORT usLevel;
 USHORT usIndex;
 DWORD dwItemInfoType;
 } WFSCDMGETITEMINFO, *LPWFSCDMGETITEMINFO;

usLevel
Defines the note level. Possible values are:

Value Meaning
WFS_CDM_LEVEL_1 Information for level 1 notes. Only an image

file can be retrieved for level 1 notes.
WFS_CDM_LEVEL_2 Information for level 2 notes. On systems

that do not support note handling standards
this value cannot be used and
WFS_ERR_INVALID_DATA will be
returned.

WFS_CDM_LEVEL_3 Information for level 3 notes. On systems
that do not support note handling standards
this value cannot be used and
WFS_ERR_INVALID_DATA will be
returned.

WFS_CDM_LEVEL_4 Information for level 4 notes. This value is
also used to retrieve item information on
systems that do not support note handling
standards.

usIndex
Specifies the index for the item information required (zero to usNumOfItems-1 as reported in the
WFS_EXEE_CDM_INFO_AVAILABLE event).

dwItemInfoType
Specifies the type of information required. This can be a combination of the following flags:

Value Meaning
WFS_CDM_ITEM_SERIALNUMBER Serial number of the item.
WFS_CDM_ITEM_SIGNATURE Signature of the item.

CWA 16926-5:2015 (E)

36

WFS_CDM_ITEM_IMAGEFILE Image file of the item.

Output Param LPWFSCDMITEMINFO lpItemInfo;

The data returned by this command relates to a single item (usIndex).
typedef struct _wfs_cdm_item_info
 {
 CHAR cCurrencyID[3];
 ULONG ulValue;
 USHORT usRelease;
 LPWSTR lpszSerialNumber;
 LPWFSCDMSIGNATURE lpSignature;
 LPSTR lpszImageFileName;
 } WFSCDMITEMINFO, *LPWFSCDMITEMINFO;

cCurrencyID
Currency ID in ISO 4217 format [Ref. 2]. This value will be an array of three ASCII 0x20h
characters for level 1 items.

ulValue
The value of a single item expressed in minimum dispense units. This value will be zero for level
1 items.

usRelease
The release of the banknote type. The higher this number is, the newer the release. Zero means
that there is only one release of that banknote type. This value has not been standardized and
therefore a release number of the same banknote will not necessarily have the same value in
different systems. This value will be zero for level 1 items.

lpszSerialNumber
This field contains the serial number of the item as a Unicode string. A '?' character (0x003F) is
used to represent any serial number character that cannot be recognized. If no serial number is
available or has not been requested then lpszSerialNumber is NULL.

lpSignature
This field contains the signature for the item. If no signature is available or has not been requested
then this field is NULL.

typedef struct _wfs_cdm_signature
 {
 ULONG ulLength;
 LPVOID lpData;
 } WFSCDMSIGNATURE, *LPWFSCDMSIGNATURE;

ulLength
Length of the signature in bytes.

lpData
Pointer to the returned signature data.

lpszImageFileName
Name of the file where the image containing the item’s serial number is stored, e.g.
“C:\Temp\cash123456.jpg”. If the Service Provider does not support this function or the image
file has not been requested then lpszImageFileName is NULL.
The application is responsible for the use and management of this file. For example, the
application can transfer the image files to a directory which is managed by the application.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments The application has to call this command multiple times in a loop where there is multiple
information to retrieve. In addition, since the item information is not cumulative and can be
replaced by any command that can move notes, it is recommended that applications that are
interested in the available information should query for it following the
WFS_EXEE_CDM_INFO_AVAILABLE event but before any other command is executed.

CWA 16926-5:2015 (E)

37

4.10 WFS_INF_CDM_GET_BLACKLIST

Description This command is used to retrieve the entire blacklist information pre-set inside the device or set
via the WFS_CMD_CDM_SET_BLACKLIST command, or
WFS_CMD_CIM_SET_BLACKLIST in the case of a recycler.

Input Param None.

Output Param LPWFSCDMBLACKLIST lpBlacklist;
typedef struct _wfs_cdm_blacklist
 {

 LPWSTR lpszVersion;
 USHORT usCount;
 LPWFSCDMBLACKLISTELEMENT *lppBlacklistElements;
 } WFSCDMBLACKLIST, *LPWFSCDMBLACKLIST;

lpszVersion
This is an application defined Unicode string that sets the version identifier of the blacklist. This
can be set to NULL if it has no version identifier.

usCount
Number of pointers to WFSCDMBLACKLISTELEMENT structures returned in
lppBlacklistElements.

lppBlacklistElements
Pointer to an array of pointers to WFSCDMBLACKLISTELEMENT structures.

typedef struct _wfs_cdm_blacklist_element
 {
 LPWSTR lpszSerialNumber;
 CHAR cCurrencyID[3];
 ULONG ulValue;
 } WFSCDMBLACKLISTELEMENT, *LPWFSCDMBLACKLISTELEMENT;

lpszSerialNumber
This Unicode string defines the serial number or a mask of serial numbers of one blacklist
item with the defined currency and value. For a definition of the mask see Section 2.

cCurrencyID
The three character ISO format currency identifier [Ref. 2] of the blacklist element.

ulValue
The value of a blacklist element. This field can be zero to represent all values.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16926-5:2015 (E)

38

4.11 WFS_INF_CDM_GET_ALL_ITEMS_INFO

Description This command can be used to retrieve all item information available for all levels at once by
specifying WFS_CDM_LEVEL_ALL in the usLevel parameter. Alternatively this command can
be used to retrieve all information for a particular level of banknote. This information is available
from the point where the first WFS_EXEE_CDM_INFO_AVAILABLE event is generated until
one of the following CDM commands is executed:

WFS_CMD_CDM_DISPENSE, WFS_CMD_CDM_COUNT, WFS_CMD_CDM_PRESENT,
WFS_CMD_CDM_RETRACT, WFS_CMD_CDM_REJECT,
WFS_CMD_CDM_OPEN_SHUTTER, WFS_CMD_CDM_CLOSE_SHUTTER,
WFS_CMD_CDM_RESET, WFS_CMD_CDM_START_EXCHANGE,
WFS_CMD_CDM_END_EXCHANGE, WFS_CMD_CDM_CALIBRATE_CASH_UNIT,
WFS_CMD_CDM_TEST_CASH_UNITS.

Additionally for a recycler, the following CIM commands will also invalidate the information:

WFS_CMD_CIM_CASH_IN_START, WFS_CMD_CIM_CASH_IN,
WFS_CMD_CIM_CASH_IN_ROLLBACK, WFS_CMD_CIM_CASH_IN_END,
WFS_CMD_CIM_RETRACT, WFS_CMD_CIM_RESET,
WFS_CMD_CIM_START_EXCHANGE, WFS_CMD_CIM_END_EXCHANGE,
WFS_CMD_CIM_CREATE_P6_SIGNATURE, WFS_CMD_CIM_REPLENISH,
WFS_CMD_CIM_CASH_UNIT_COUNT.

The WFS_EXEE_CDM_INPUT_P6 event signals that a suspected forgery has been detected and
is only generated when level 2 and/or level 3 notes are detected.

Input Param LPWFSCDMGETALLITEMSINFO lpGetAllItemsInfo;

typedef struct _wfs_cdm_get_all_items_info
 {
 USHORT usLevel;
 } WFSCDMGETALLITEMSINFO, *LPWFSCDMGETALLITEMSINFO;

usLevel
Defines the note level. Possible values are:

Value Meaning
WFS_CDM_LEVEL_1 Information for level 1 notes. Only an image

file can be retrieved for level 1 notes.
WFS_CDM_LEVEL_2 Information for level 2 notes is to be

returned with the lpAllItemsInfo output
parameter.

WFS_CDM_LEVEL_3 Information for level 3 notes is to be
returned with the lpAllItemsInfo output
parameter.

WFS_CDM_LEVEL_4 Information for level 4 notes is to be
returned with the lpAllItemsInfo output
parameter. This value is also used to retrieve
item information on systems that do not
support note handling standards.

WFS_CDM_LEVEL_ALL Information for all levels all items is to be
returned with the lpAllItemsInfo output
parameter.

Output Param LPWFSCDMALLITEMSINFO lpAllItemsInfo;

typedef struct _wfs_cdm_all_items_info
 {
 USHORT usCount;
 LPWFSCDMITEMINFOALL *lppItemsList;
 } WFSCDMALLITEMSINFO, *LPWFSCDMALLITEMSINFO;

usCount
Number of WFSCDMITEMINFOALL structures returned in lppItemsList.

lppItemsList
Pointer to an array of pointers to WFSCDMITEMINFOALL structures:

CWA 16926-5:2015 (E)

39

typedef struct _wfs_cdm_item_info_all
 {
 USHORT usLevel;
 CHAR cCurrencyID[3];
 ULONG ulValue;
 USHORT usRelease;
 LPWSTR lpszSerialNumber;
 LPSTR lpszImageFileName;
 WORD wOnBlacklist;
 WORD wItemLocation;
 USHORT usNumber;
 } WFSCDMITEMINFOALL, * LPWFSCDMITEMINFOALL;

usLevel
Defines the note level. Possible values are:

Value Meaning
WFS_CDM_LEVEL_1 A level 1 banknote.
WFS_CDM_LEVEL_2 A level 2 banknote.
WFS_CDM_LEVEL_3 A level 3 banknote.
WFS_CDM_LEVEL_4 A level 4 banknote.

cCurrencyID
Currency ID in ISO 4217 format [Ref. 2]. This value will be an array of three ASCII 0x20h
characters for level 1 items.

ulValue
The value of a single item expressed in minimum dispense units. This value will be zero for
level 1 items.

usRelease
The release of the banknote type. The higher this number is, the newer the release. Zero means
that there is only one release of that banknote type. This value has not been standardized and
therefore a release number of the same banknote will not necessarily have the same value in
different systems. This value will be zero for level 1 items.

lpszSerialNumber
This field contains the serial number of the item as a Unicode string. A '?' character (0x003F)
is used to represent any serial number character that cannot be recognized. If no serial number
is available then lpszSerialNumber is NULL.

lpszImageFileName
Full file path to an image file containing the serial number(s). If no image is available then this
field is NULL.

wOnBlacklist
Specifies if the serial number reported in the lpszSerialNumber field is on the blacklist. If the
blacklist reporting capability is not supported this field will be zero. Otherwise, possible
values are:

Value Meaning
WFS_CDM_ONBLACKLIST The serial number of the items is on the

blacklist.
WFS_CDM_NOTONBLACKLIST The serial number of the items is not on

the blacklist.
WFS_CDM_BLACKLISTUNKNOWN It is unknown if the serial number of the

item is on the blacklist.

wItemLocation
Specifies the location of the item as one of the following values:

Value Meaning
WFS_CDM_LOCATION_DEVICE The item is inside the device in some

position other than a cash unit.
WFS_CDM_LOCATION_CASHUNIT The item is in a cash unit. The logical

cash unit number is defined by
usNumber.

CWA 16926-5:2015 (E)

40

WFS_CDM_LOCATION_CUSTOMER The item has been dispensed to the
customer.

WFS_CDM_LOCATION_UNKNOWN The item location is unknown.

usNumber
If wItemLocation is WFS_CDM_LOCATION_CASHUNIT this parameter specifies the
logical number of the cash unit which received the item. If wItemLocation is not
WFS_CDM_LOCATION_CASHUNIT then usNumber will be zero.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments In addition, since the item information is not cumulative and can be replaced by any command
that can move notes, it is recommended that applications that are interested in the available
information should query for it following the WFS_EXEE_CDM_INFO_AVAILABLE event but
before any other command is executed.

CWA 16926-5:2015 (E)

41

5. Execute Commands

5.1 WFS_CMD_CDM_DENOMINATE

Description This command provides a denomination. A denomination specifies the number of items which are
required from each cash unit in order to satisfy a given amount. The denomination depends upon
the currency, the mix algorithm and any partial denomination supplied by the application.

This command can also be used to validate that any denomination supplied by the application can
be dispensed.

If items of differing currencies are to be included in the same denomination then the currency
field must be an array of three ASCII 0x20h characters, the amount must be zero and the mix
number must be WFS_CDM_INDIVIDUAL. However, these restrictions do not apply if a single
currency is combined with non-currency items, such as coupons.

If the bCashBox field of the WFSCDMCAPS structure returned by the
WFS_INF_CDM_CAPABILITIES command is TRUE then, if the entire denomination cannot be
satisfied, a partial denomination will be returned with the remaining amount to be supplied from
the teller’s cash box.

This command can be used in four different ways:

1. In order to check that it is possible to dispense a given denomination. The input parameters to
the command are currency and denomination, with a mix number of
WFS_CDM_INDIVIDUAL and an amount of zero. If items of differing currencies are to be
dispensed then the currency field should be an array of three ASCII 0x20h characters.

2. In order to validate that a given amount matches a given denomination and that it is possible to
dispense the denomination. The input parameters to the command should be amount, currency
and denomination, with a mix number of WFS_CDM_INDIVIDUAL.

3. In order to obtain a denomination of a given amount. The input parameters supplied should be
amount, currency and mix number.

4. In order to complete a partial denomination of a given amount. In this case the input
parameters to the command should be currency, amount, mix number and either a partially
specified denomination or a minimum amount from the cash box. A completed denomination
is returned. ulCashBox of the denomination structure may be updated as a result of this
command.

Input Param LPWFSCDMDENOMINATE lpDenominate;
typedef struct _wfs_cdm_denominate
 {
 USHORT usTellerID;
 USHORT usMixNumber;
 LPWFSCDMDENOMINATION lpDenomination;
 } WFSCDMDENOMINATE, *LPWFSCDMDENOMINATE;

usTellerID
Identification of teller. This field is ignored if the device is a Self-Service CDM.

usMixNumber
Mix algorithm or house mix table to be used.

lpDenomination
Pointer to a WFSCDMDENOMINATION structure, describing the contents of the denomination
operation.

typedef struct _wfs_cdm_denomination
 {
 CHAR cCurrencyID[3];
 ULONG ulAmount;
 USHORT usCount;
 LPULONG lpulValues;
 ULONG ulCashBox;
 } WFSCDMDENOMINATION, *LPWFSCDMDENOMINATION;

CWA 16926-5:2015 (E)

42

cCurrencyID
Identification of currency in ISO format [Ref. 2]. Where the denomination contains multiple
currencies this field should be set to three ASCII 0x20 characters.

ulAmount
The amount to be denominated or dispensed. Where the denomination contains multiple
currencies this value is zero.

usCount
The size of the lpulValues list. This usCount is the same as the usCount returned from the last
WFS_INF_CDM_CASH_UNIT_INFO command or set by the last
WFS_CMD_CDM_END_EXCHANGE command. If this value is not required because a mix
algorithm is used then the usCount can be set to zero.

If the application passes in an invalid usCount the Service Provider should return a
WFS_ERR_INVALID_DATA return code.

lpulValues
Pointer to an array of ULONGs. This list specifies the number of items to take from each of
the cash units. This list corresponds to the array of cash unit structures returned by the last
WFS_INF_CDM_CASH_UNIT_INFO command or set by the last
WFS_CMD_CDM_SET_CASH_UNIT_INFO or WFS_CMD_CDM_END_EXCHANGE
commands. The first value in the array is related to the cash structure with the index number 1.

This array contains a field for each possible cash unit. If a cash unit is not required in the
denomination its corresponding field in this array should be set to zero.

If the application does not wish to specify a denomination, it should set the lpulValues pointer
to NULL.

ulCashBox
Only applies to Teller CDM devices. Amount to be paid from the teller’s cash box.

Output Param LPWFSCDMDENOMINATION lpDenomination;

For a description see the input structure.

Where mixed currencies are being denominated the ulAmount field in the returned denomination
structure will be zero and the cCurrencyID field will be set to three ASCII 0x20 characters.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CDM_INVALIDCURRENCY There are no cash units in the CDM of the

currency specified in the cCurrencyID field
of the input parameter.

WFS_ERR_CDM_INVALIDTELLERID Invalid teller ID. This error will never be
generated by a Self-Service CDM.

WFS_ERR_CDM_CASHUNITERROR There is a problem with a cash unit. A
WFS_EXEE_CDM_CASHUNITERROR
event will be posted with the details.

WFS_ERR_CDM_INVALIDDENOMINATION The usMixNumber is
WFS_CDM_INDIVIDUAL and the sum of
the values for ulCashBox and the items
specified by lpulValues does not match the
non-zero amount specified. This error code
is not used when the amount specified is
zero.

WFS_ERR_CDM_INVALIDMIXNUMBER Unknown mix algorithm.
WFS_ERR_CDM_NOCURRENCYMIX The cash units specified in the denomination

were not all of the same currency.
WFS_ERR_CDM_NOTDISPENSABLE The amount is not dispensable by the CDM.
WFS_ERR_CDM_TOOMANYITEMS The request requires too many items to be

dispensed.
WFS_ERR_CDM_EXCHANGEACTIVE The CDM is in an exchange state (see

section
WFS_CMD_CDM_START_EXCHANGE).

CWA 16926-5:2015 (E)

43

WFS_ERR_CDM_NOCASHBOXPRESENT Cash box amount needed, however teller is
not assigned a cash box.

WFS_ERR_CDM_AMOUNTNOTINMIXTABLE
A mix table is being used to determine the
denomination but the amount specified for
the denomination is not in the mix table.

Events In addition to the generic event defined in [Ref. 1], the following events can be generated as a
result of this command:

Value Meaning
WFS_EXEE_CDM_CASHUNITERROR An error occurred while attempting to

denominate from the cash unit specified by
the event.

Comments None.

CWA 16926-5:2015 (E)

44

5.2 WFS_CMD_CDM_DISPENSE

Description This command performs the dispensing of items to the customer. The command provides the
same functionality as the WFS_CMD_CDM_DENOMINATE command plus the additional
functionality of dispensing the items. If items of differing currencies are to be dispensed then the
currency field must be an array of three ASCII 0x20h characters, the amount must be zero and the
mix number must be WFS_CDM_INDIVIDUAL. However, these restrictions do not apply if a
single currency is dispensed with non-currency items, such as coupons.

The WFS_CMD_CDM_DISPENSE command can be used in the following ways:

1. The input parameters to the command are amount, currency and denomination. The mix
number is WFS_CDM_INDIVIDUAL. In this case, the denomination is checked for validity
and, if valid, is dispensed.

2. The input parameters are amount, currency and mix number. In this case the amount is
denominated and, if this succeeds, the items are dispensed.

3. If the amount is zero, but the currency and the denomination are supplied with a mix number
of WFS_CDM_INDIVIDUAL the denomination is checked for validity and, if valid, is
dispensed.

4. The command will calculate a partial denomination of a given amount and dispense the
complete denomination. In this case the input parameters to the command should be currency,
amount, mix number and either a partially specified denomination or a minimum amount from
the cash box. The cash box amount may be updated as a result of this command.

When more than one physical cash unit exists for a logical cash unit number, the device selects
the actual physical cash unit to use in the dispense operation.

If the bCashBox field of the WFSCDMCAPS structure returned by the
WFS_INF_CDM_CAPABILITIES command is TRUE then, if the entire denomination cannot be
satisfied, a partial denomination will be returned with the remaining amount to be supplied from
the teller’s cash box.

If the device is a Teller CDM, the input field fwPosition can be set to WFS_CDM_POSNULL. If
this is the case the usTellerID is used to perform the dispense operation to the assigned teller
position.

The field bPresent of the WFSCDMDISPENSE structure determines whether items are actually
presented to the user as part of the dispense operation. If this field is set to TRUE then the items
will be moved to the exit slot, if it is FALSE the items will be moved to an intermediate stacker.
In the second case it will be necessary to use the WFS_CMD_CDM_PRESENT command to
present the items to the user. If bPresent is set to FALSE then the fwPosition field is ignored. If
the CDM does not have an intermediate stacker then bPresent is ignored.

If bPresent is set to TRUE and a shutter exists, then it will be implicitly controlled during the
present operation, even if the bShutterControl capability is set to FALSE. The shutter will be
closed when the user removes the items or the items are retracted.

Input Param LPWFSCDMDISPENSE lpDispense;
typedef struct _wfs_cdm_dispense
 {
 USHORT usTellerID;
 USHORT usMixNumber;
 WORD fwPosition;
 BOOL bPresent;
 LPWFSCDMDENOMINATION lpDenomination;
 } WFSCDMDISPENSE, *LPWFSCDMDISPENSE;

usTellerID
Identifies the teller. This field is ignored if the device is a Self-Service CDM.

usMixNumber
Mix algorithm or house mix table to be used to create a denomination of the supplied amount. If
the value is WFS_CDM_INDIVIDUAL, the denomination supplied in the lpDenomination field
is validated prior to the dispense operation. If it is found to be invalid no alternative denomination
will be calculated.

CWA 16926-5:2015 (E)

45

fwPosition
Determines to which side the amount is dispensed. If the device is a Teller CDM this field is
ignored and the output position associated with usTellerID is used. The value is specified by one
of the following values:

Value Meaning
WFS_CDM_POSNULL The default configuration information is

used. This can be either position dependent
or teller dependent.

WFS_CDM_POSLEFT Present items to left side of device.
WFS_CDM_POSRIGHT Present items to right side of device.
WFS_CDM_POSCENTER Present items to center output position.
WFS_CDM_POSTOP Present items to the top output position.
WFS_CDM_POSBOTTOM Present items to the bottom output position.
WFS_CDM_POSFRONT Present items to the front output position.
WFS_CDM_POSREAR Present items to the rear output position.

bPresent
If this field is set to TRUE then the items will be moved to the exit slot, if it is FALSE the items
will be moved to an intermediate stacker.

lpDenomination
Pointer to a WFSCDMDENOMINATION structure, describing the denominations used for the
dispense operation. For the WFSCDMDENOMINATION structure specification see the
definition of the command WFS_CMD_CDM_DENOMINATE.

Output Param LPWFSCDMDENOMINATION lpDenomination;

For the WFSCDMDENOMINATION structure specification see the definition of the command
WFS_CMD_CDM_DENOMINATE.

The values in this structure report the amount dispensed and the number of items dispensed from
each cash unit.

Where mixed currencies are being dispensed the ulAmount field in the returned denomination
structure will be zero and the cCurrencyID field will be set to three ASCII 0x20 characters.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CDM_INVALIDCURRENCY There are no cash units in the CDM of the

currency specified in the cCurrencyID field
of the input parameter.

WFS_ERR_CDM_INVALIDTELLERID Invalid teller ID. This error will never be
generated by a Self-Service CDM.

WFS_ERR_CDM_CASHUNITERROR There is a problem with a cash unit. A
WFS_EXEE_CDM_CASHUNITERROR
execute event is posted with the details.

WFS_ERR_CDM_INVALIDDENOMINATION The sum of the values for cash box and cash
units was greater than the amount specified.

WFS_ERR_CDM_INVALIDMIXNUMBER Mix algorithm is not known.
WFS_ERR_CDM_NOCURRENCYMIX Cash units containing two or more different

currencies were selected.
WFS_ERR_CDM_NOTDISPENSABLE The amount is not dispensable by the CDM.
WFS_ERR_CDM_TOOMANYITEMS The request would require too many items to

be dispensed. This error is also generated if
bPresent is FALSE and sub-dispensing is
required.

WFS_ERR_CDM_UNSUPPOSITION The specified output position is not
supported.

WFS_ERR_CDM_SAFEDOOROPEN The safe door is open. This device requires
the safe door to be closed in order to perform
this operation.

WFS_ERR_CDM_EXCHANGEACTIVE The CDM is in an exchange state.

CWA 16926-5:2015 (E)

46

WFS_ERR_CDM_NOCASHBOXPRESENT Cash box amount needed, however teller is
not assigned a cash box.

WFS_ERR_CDM_AMOUNTNOTINMIXTABLE
A mix table is being used to determine the
denomination but the amount specified for
the denomination is not in the mix table.

WFS_ERR_CDM_ITEMSNOTTAKEN Items have not been taken during a sub-
dispense operation. This error occurs if a
hardware timeout expires.

WFS_ERR_CDM_ITEMSLEFT Items have been left in the transport or exit
slot as a result of a prior dispense, present or
recycler cash-in operation.

WFS_ERR_CDM_SHUTTEROPEN The Service Provider cannot dispense items
with an open output shutter.

If the bPresent field of the WFSCDMDISPENSE structure is TRUE, the following error codes
can also be returned:

Value Meaning
WFS_ERR_CDM_SHUTTERNOTOPEN The shutter is not open or did not open when

it should have. No items presented.
WFS_ERR_CDM_PRERRORNOITEMS An error occurred while items were being

moved to the exit slot - no items are
presented.

WFS_ERR_CDM_PRERRORITEMS An error occurred while items were being
moved to the exit slot - at least some of the
items have been presented.

WFS_ERR_CDM_PRERRORUNKNOWN An error occurred while items were being
moved to the exit slot - the position of the
items is unknown. Intervention may be
required to reconcile the cash amount totals.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a
result of this command:

Value Meaning
WFS_USRE_CDM_CASHUNITTHRESHOLD A threshold condition has been reached in

one of the cash units.
WFS_EXEE_CDM_DELAYEDDISPENSE The dispense operation will be delayed by

the specified time.
WFS_EXEE_CDM_STARTDISPENSE Fired when the delayed dispense operation

starts.
WFS_EXEE_CDM_CASHUNITERROR A cash unit caused an error during a

dispense operation.
WFS_SRVE_CDM_ITEMSTAKEN The user has removed the items presented. If

the dispense is not a sub-dispense this event
occurs after the completion of the dispense
command.

WFS_EXEE_CDM_PARTIALDISPENSE Indicates that the dispense operation is to be
divided into several sub-dispense operations.

WFS_EXEE_CDM_SUBDISPENSEOK A sub-dispense operation was completed
successfully.

WFS_EXEE_CDM_INCOMPLETEDISPENSE It has not been possible to dispense the entire
denomination but part of the denomination
has been dispensed, whether on the
intermediate stacker or in customer access.
The return error code will be
WFS_ERR_CDM_NOTDISPENSABLE.

WFS_EXEE_CDM_NOTEERROR An item detection error has occurred.
WFS_EXEE_CDM_INPUT_P6 Level 2 and/or level 3 notes have been

detected.
WFS_EXEE_CDM_INFO_AVAILABLE Information is available for items being

processed by this operation.

CWA 16926-5:2015 (E)

47

WFS_SRVE_CDM_SHUTTERSTATUSCHANGED
The shutter status has changed.

Comments None.

CWA 16926-5:2015 (E)

48

5.3 WFS_CMD_CDM_COUNT

Description This command empties the specified physical cash unit(s). All items dispensed from the cash unit
are counted and moved to the specified output location.

The number of items counted can be different from the number of items dispensed in cases where
the CDM has the ability to detect this information. If the CDM cannot differentiate between what
is dispensed and what is counted then ulDispensed will be the same as ulCounted.

Upon successful WFS_CMD_CDM_COUNT command execution the physical cash unit(s)
ulCount field within the WFSCDMPHCU structure is reset.

Input Param LPWFSCDMPHYSICALCU lpPhysicalCU;
typedef struct _wfs_cdm_physical_cu
 {
 BOOL bEmptyAll;
 WORD fwPosition;
 LPSTR lpPhysicalPositionName;
 } WFSCDMPHYSICALCU, *LPWFSCDMPHYSICALCU;

bEmptyAll
Specifies whether all physical cash units are to be emptied. If this value is TRUE then
lpPhysicalPositionName is ignored.

fwPosition
Specifies the location to which items should be moved. The value is set to one of the following
values:

Value Meaning
WFS_CDM_POSNULL Output location is determined by Service

Provider.
WFS_CDM_POSLEFT Present items to left side of device.
WFS_CDM_POSRIGHT Present items to right side of device.
WFS_CDM_POSCENTER Present items to center output position.
WFS_CDM_POSTOP Present items to the top output position.
WFS_CDM_POSBOTTOM Present items to the bottom output position.
WFS_CDM_POSFRONT Present items to the front output position.
WFS_CDM_POSREAR Present items to the rear output position.
WFS_CDM_POSREJECT Reject bin is used as output location.

lpPhysicalPositionName
Specifies which physical cash unit to empty and count. This name is the same as the
lpPhysicalPositionName in the WFSCDMPHCU structure.

Output Param LPWFSCDMCOUNT lpCount;
typedef struct _wfs_cdm_count
 {
 USHORT usNumPhysicalCUs;
 LPWFSCDMCOUNTEDPHYSCU *lppCountedPhysCUs;
 } WFSCDMCOUNT, *LPWFSCDMCOUNT;

usNumPhysicalCUs
This value indicates the number of physical cash unit structures (WFSCDMCOUNTEDPHYSCU)
returned. This value will always be greater than zero.

lppCountedPhysCUs
Pointer to an array of pointers to WFSCDMCOUNTEDPHYSCU structures:

typedef struct _wfs_cdm_counted_phys_cu
 {
 LPSTR lpPhysicalPositionName;
 CHAR cUnitId[5];
 ULONG ulDispensed;
 ULONG ulCounted;
 USHORT usPStatus;
 } WFSCDMCOUNTEDPHYSCU, *LPWFSCDMCOUNTEDPHYSCU;

CWA 16926-5:2015 (E)

49

lpPhysicalPositionName
Specifies which physical cash unit was emptied and counted. This name is that defined in the
lpPhysicalPositionName field of the WFSCDMPHCU structure.

cUnitId
Cash unit ID. This is the identifier defined in the cUnitID field of the WFSCDMPHCU
structure.

ulDispensed
The number of items that were dispensed during the emptying of the cash unit.

ulCounted
The number of items that were counted during the emptying of the cash unit.

usPStatus
Supplies the status of the physical cash unit as one of the following values:

Value Meaning
WFS_CDM_STATCUOK The cash unit is in a good state.
WFS_CDM_STATCUFULL The cash unit is full.
WFS_CDM_STATCUHIGH The cash unit is almost full (reached or

exceeded the threshold defined by
WFSCDMCASHUNIT.ulMaximum).

WFS_CDM_STATCULOW The cash unit is almost empty.
WFS_CDM_STATCUEMPTY The cash unit is empty.
WFS_CDM_STATCUINOP The cash unit is inoperative.
WFS_CDM_STATCUMISSING The cash unit is missing.
WFS_CDM_STATCUNOVAL The values of the specified cash unit are

not available.
WFS_CDM_STATCUNOREF There is no reference value available for

the notes in this cash unit.
WFS_CDM_STATCUMANIP The cash unit has been inserted

(including removal followed by a
reinsertion) when the device was not in
the exchange state. This cash unit cannot
be dispensed from.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CDM_CASHUNITERROR A cash unit caused a problem. A

WFS_EXEE_CDM_CASHUNITERROR
event will be posted with the details.

WFS_ERR_CDM_UNSUPPOSITION The position specified is not supported.
WFS_ERR_CDM_SAFEDOOROPEN The safe door is open. This device requires

the safe door to be closed in order to perform
this operation.

WFS_ERR_CDM_EXCHANGEACTIVE The CDM is in an exchange state.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a
result of this command:

Value Meaning
WFS_EXEE_CDM_CASHUNITERROR A cash unit caused an error during the count

operation.
WFS_SRVE_CDM_ITEMSTAKEN The items emptied to the output location

have been removed by the user.
WFS_SRVE_CDM_ITEMSPRESENTED Items have been emptied to the output

location. These items may need to be
removed from the output location before the
operation can continue.

WFS_EXEE_CDM_NOTEERROR An item detection error has occurred.
WFS_EXEE_CDM_INPUT_P6 Level 2 and/or level 3 notes have been

detected.

CWA 16926-5:2015 (E)

50

WFS_EXEE_CDM_INFO_AVAILABLE Information is available for items being
processed by this operation.

WFS_SRVE_CDM_SHUTTERSTATUSCHANGED
The shutter status has changed.

Comments None.

CWA 16926-5:2015 (E)

51

5.4 WFS_CMD_CDM_PRESENT

Description This command will move items to the exit position for removal by the user. If a shutter exists,
then it will be implicitly controlled during the present operation, even if the bShutterControl
capability is set to FALSE. The shutter will be closed when the user removes the items or the
items are retracted. If lpfwPosition points to WFS_CDM_POSNULL the position set in the
WFS_CMD_CDM_DISPENSE command which caused these items to be dispensed will be used.

When this command successfully completes the items are in customer access.

Input Param LPWORD lpfwPosition;

lpfwPosition
Pointer to the output position where the amount is to be presented. The value is set to one of the
following values:

Value Meaning
WFS_CDM_POSNULL The default configuration information is

used. This can be either position dependent
or teller dependent.

WFS_CDM_POSLEFT Present items to left side of device.
WFS_CDM_POSRIGHT Present items to right side of device.
WFS_CDM_POSCENTER Present items to center output position.
WFS_CDM_POSTOP Present items to the top output position.
WFS_CDM_POSBOTTOM Present items to the bottom output position.
WFS_CDM_POSFRONT Present items to the front output position.
WFS_CDM_POSREAR Present items to the rear output position.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CDM_SHUTTERNOTOPEN The shutter did not open when it should

have. No items presented.
WFS_ERR_CDM_SHUTTEROPEN The shutter is open when it should be closed.

No items presented.
WFS_ERR_CDM_NOITEMS There are no items on the stacker.
WFS_ERR_CDM_EXCHANGEACTIVE The CDM is in an exchange state.
WFS_ERR_CDM_PRERRORNOITEMS There was an error during the present

operation - no items were presented.
WFS_ERR_CDM_PRERRORITEMS There was an error during the present

operation - at least some of the items were
presented.

WFS_ERR_CDM_PRERRORUNKNOWN There was an error during the present
operation - the position of the items is
unknown. Intervention may be required to
reconcile the cash amount totals.

WFS_ERR_CDM_UNSUPPOSITION The position specified is not supported.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a
result of this command:

Value Meaning
WFS_USRE_CDM_CASHUNITTHRESHOLD A threshold condition has been reached in

one of the cash units.
WFS_SRVE_CDM_ITEMSTAKEN The items have been removed by the user.

 This event is generated after the
completion of the present operation.

WFS_EXEE_CDM_INPUT_P6 Level 2 and/or level 3 notes have been
detected.

WFS_EXEE_CDM_INFO_AVAILABLE Information is available for items being
processed by this operation.

CWA 16926-5:2015 (E)

52

WFS_SRVE_CDM_SHUTTERSTATUSCHANGED
The shutter status has changed.

Comments None.

CWA 16926-5:2015 (E)

53

5.5 WFS_CMD_CDM_REJECT

Description This command will move items from the intermediate stacker and transport them to a reject cash
unit (i.e. a cash unit with usType WFS_CDM_TYPEREJECTCASSETTE). The
WFSCDMCASHUNIT.ulCount field of the reject cash unit is incremented by the number of
items that were thought to be present at the time of the reject or the number counted by the device
during the reject. Note that the reject bin count is unreliable.

Input Param None.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CDM_CASHUNITERROR A reject cash unit caused a problem. A

WFS_EXEE_CDM_CASHUNITERROR
event will be posted with the details.

WFS_ERR_CDM_NOITEMS There were no items on the stacker.
WFS_ERR_CDM_EXCHANGEACTIVE The CDM is in an exchange state.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a
result of this command:

Value Meaning
WFS_USRE_CDM_CASHUNITTHRESHOLD A reject bin threshold condition has been

reached.
WFS_EXEE_CDM_CASHUNITERROR A cash unit caused an error during the reject

operation.
WFS_EXEE_CDM_INPUT_P6 Level 2 and/or level 3 notes have been

detected.
WFS_EXEE_CDM_INFO_AVAILABLE Information is available for items being

processed by this operation.

Comments None.

CWA 16926-5:2015 (E)

54

5.6 WFS_CMD_CDM_RETRACT

Description This command will retract items which may have been in customer access. Retracted items will
be moved to either a retract cash unit, a reject cash unit, item cash units, the transport or the
intermediate stacker. After the items are retracted the shutter is closed automatically, even if the
bShutterControl capability is set to FALSE.

If items are moved to a retract cash unit (i.e. a cash unit with usType
WFS_CDM_TYPERETRACTCASSETTE), then the WFSCDMCASHUNIT.ulCount field of the
retract cash unit must be incremented by 1 to specify the number of retracts. If items are moved to
any other cash unit (e.g. a cash unit with usType WFS_CDM_TYPEREJECTCASSETTE) then
the WFSCDMCASHUNIT.ulCount field of the cash unit must be incremented by the number of
items that were thought to be present at the time the WFS_CMD_CDM_RETRACT command
was issued or the number counted by the device during the retract. Note that reject bin counts are
unreliable.

For cash recycler implementations with a note handling standard it is recommended to use the
WFS_CMD_CIM_RETRACT command instead of this command.

Input Param LPWFSCDMRETRACT lpRetract;

typedef struct _wfs_cdm_retract
 {
 WORD fwOutputPosition;
 USHORT usRetractArea;
 USHORT usIndex;
 } WFSCDMRETRACT, *LPWFSCDMRETRACT;

fwOutputPosition
Specifies the output position from which to retract the items. The value is set to one of the
following values:

Value Meaning
WFS_CDM_POSNULL The default configuration information should

be used.
WFS_CDM_POSLEFT Retract items from the left output position.
WFS_CDM_POSRIGHT Retract items from the right output position.
WFS_CDM_POSCENTER Retract items from the center output

position.
WFS_CDM_POSTOP Retract items from the top output position.
WFS_CDM_POSBOTTOM Retract items from the bottom output

position.
WFS_CDM_POSFRONT Retract items from the front output position.
WFS_CDM_POSREAR Retract items from the rear output position.

usRetractArea
This value specifies the area to which the items are to be retracted. Possible values are:

Value Meaning
WFS_CDM_RA_RETRACT Retract the items to a retract cash unit.
WFS_CDM_RA_TRANSPORT Retract the items to the transport.
WFS_CDM_RA_STACKER Retract the items to the intermediate stacker

area.
WFS_CDM_RA_REJECT Retract the items to a reject cash unit.
WFS_CDM_RA_ITEMCASSETTE Retract the items to the item cassettes, i.e.

cassettes that can be dispensed from.

CWA 16926-5:2015 (E)

55

usIndex
If usRetractArea is set to WFS_CDM_RA_RETRACT this field defines the position inside the
retract cash units into which the cash is to be retracted. usIndex starts with a value of one (1) for
the first retract position and increments by one for each subsequent position. If there are several
logical retract cash units (of type WFS_CDM_TYPERETRACTCASSETTE in command
WFS_INF_CDM_CASH_UNIT_INFO), usIndex would be incremented from the first position of
the first retract cash unit to the last position of the last retract cash unit defined in
WFSCDMCUINFO. The maximum value of usIndex is the sum of
WFSCDMCASHUNIT.ulMaximum of each retract cash unit. If usRetractArea is not set to
WFS_CDM_RA_RETRACT the value of this field is ignored.

Output Param LPWFSCDMITEMNUMBERLIST lpItemNumberList;

Pointer to a WFSCDMITEMNUMBERLIST structure. This parameter will provide details about
the items moved with this command or this parameter will be NULL if the device is not capable
of identifying the moved items.

typedef struct _wfs_cdm_item_number_list
 {
 USHORT usNumOfItemNumbers;
 LPWFSCDMITEMNUMBER *lppItemNumber;
 } WFSCDMITEMNUMBERLIST, *LPWFSCDMITEMNUMBERLIST;

usNumOfItemNumbers
Number of item types moved during this command, i.e. the number of lppItemNumber list
elements.

lppItemNumber
List of item types moved to the usRetractArea during this command. A pointer to an array of
pointers to WFSCDMITEMNUMBER structures:

typedef struct _wfs_cdm_item_number
 {
 CHAR cCurrencyID[3];
 ULONG ulValues;
 USHORT usRelease;
 ULONG ulCount;
 USHORT usNumber;
 } WFSCDMITEMNUMBER, *LPWFSCDMITEMNUMBER;

cCurrencyID
A three character array storing the ISO format [Ref. 2] Currency ID; or three ASCII 0x20h
characters if the currency of the item is not known.

ulValues
The value of a single item expressed in minimum dispense units; or a zero value if the value of
the item is not known.

usRelease
The release of the item. The higher this number is, the newer the release. Zero means that
there is only one release or the release is not known. This value has not been standardized and
therefore a release number of the same item will not necessarily have the same value in
different systems.

ulCount
The count of items of the same type moved to the same destination during the execution of
this command.

usNumber
The logical number of the cash unit which received items during the execution of this
command. This value will be zero if items were moved to the usRetractArea
WFS_CDM_RA_TRANSPORT or WFS_CDM_RA_STACKER.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CDM_CASHUNITERROR A retract cash unit caused a problem. A

WFS_EXEE_CDM_CASHUNITERROR
event will be posted with the details.

CWA 16926-5:2015 (E)

56

WFS_ERR_CDM_NOITEMS There were no items to retract.
WFS_ERR_CDM_EXCHANGEACTIVE The CDM is in an exchange state.
WFS_ERR_CDM_SHUTTERNOTCLOSED The shutter failed to close.
WFS_ERR_CDM_ITEMSTAKEN Items were present at the output position at

the start of the operation, but were removed
before the operation was complete - some or
all of the items were not retracted.

WFS_ERR_CDM_INVALIDRETRACTPOSITION
The usIndex is not supported.

WFS_ERR_CDM_NOTRETRACTAREA The retract area specified in usRetractArea is
not supported.

WFS_ERR_CDM_UNSUPPOSITION The output position specified is not
supported.

WFS_ERR_CDM_POSITION_NOT_EMPTY The retract area specified in usRetractArea is
not empty so the retract operation is not
possible.

WFS_ERR_CDM_INCOMPLETERETRACT Some or all of the items were not retracted
for a reason not covered by other error
codes. The detail will be reported with the
WFS_EXEE_CDM_INCOMPLETERETRA
CT event.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a
result of this command:

Value Meaning
WFS_USRE_CDM_CASHUNITTHRESHOLD A threshold condition has been reached in a

retract or reject cash unit.
WFS_EXEE_CDM_CASHUNITERROR An error occurred while attempting to retract

to a retract, reject or item cash unit.
WFS_SRVE_CDM_ITEMSTAKEN The items presented have been removed by

the user.
WFS_EXEE_CDM_INPUT_P6 Level 2 and/or level 3 notes have been

detected.
WFS_EXEE_CDM_INFO_AVAILABLE Information is available for items being

processed by this operation.
WFS_EXEE_CDM_INCOMPLETERETRACT The retract command has completed with an

error and not all of the items have been
retracted. The detail of what was actually
retracted will be reported with the event
data.

WFS_SRVE_CDM_SHUTTERSTATUSCHANGED
The shutter status has changed.

Comments None.

CWA 16926-5:2015 (E)

57

5.7 WFS_CMD_CDM_OPEN_SHUTTER

Description This command opens the shutter.

Input Param LPWORD lpfwPosition;

lpfwPosition
Pointer to the output position where the shutter is to be opened. If the application does not need to
specify a shutter, this field can be set to NULL or its contents to WFS_CDM_POSNULL. The
position can be set to one of the following values:

Value Meaning
WFS_CDM_POSNULL The default configuration information should

be used.
WFS_CDM_POSLEFT Open the shutter at the left output position.
WFS_CDM_POSRIGHT Open the shutter at the right output position.
WFS_CDM_POSCENTER Open the shutter at the center output

position.
WFS_CDM_POSTOP Open the shutter at the top output position.
WFS_CDM_POSBOTTOM Open the shutter at the bottom output

position.
WFS_CDM_POSFRONT Open the shutter at the front output position.
WFS_CDM_POSREAR Open the shutter at the rear output position.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CDM_UNSUPPOSITION The position specified is not supported.
WFS_ERR_CDM_SHUTTERNOTOPEN The shutter failed to open.
WFS_ERR_CDM_SHUTTEROPEN The shutter was already open.
WFS_ERR_CDM_EXCHANGEACTIVE The CDM is in an exchange state.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a
result of this command:

Value Meaning
WFS_SRVE_CDM_SHUTTERSTATUSCHANGED

The shutter status has changed.

Comments None.

CWA 16926-5:2015 (E)

58

5.8 WFS_CMD_CDM_CLOSE_SHUTTER

Description This command closes the shutter.

Input Param LPWORD lpfwPosition;

lpfwPosition
Pointer to the output position where the shutter is to be closed. If the application does not need to
specify a shutter, this field can be set to NULL or its contents to WFS_CDM_POSNULL. The
position can be set to one of the following values:

Value Meaning
WFS_CDM_POSNULL The default configuration information should

be used.
WFS_CDM_POSLEFT Close the shutter at the left output position.
WFS_CDM_POSRIGHT Close the shutter at the right output position.
WFS_CDM_POSCENTER Close the shutter at the center output

position.
WFS_CDM_POSTOP Close the shutter at the top output position.
WFS_CDM_POSBOTTOM Close the shutter at the bottom output

position.
WFS_CDM_POSFRONT Close the shutter at the front output position.
WFS_CDM_POSREAR Close the shutter at the rear output position.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CDM_UNSUPPOSITION The position specified is not supported.
WFS_ERR_CDM_SHUTTERCLOSED The shutter was already closed.
WFS_ERR_CDM_SHUTTERNOTCLOSED The shutter failed to close.
WFS_ERR_CDM_EXCHANGEACTIVE The CDM is in an exchange state.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a
result of this command:

Value Meaning
WFS_SRVE_CDM_SHUTTERSTATUSCHANGED

The shutter status has changed.

Comments None.

CWA 16926-5:2015 (E)

59

5.9 WFS_CMD_CDM_SET_TELLER_INFO

Description This command allows the application to set the teller position and initialize counts for each
currency assigned to the teller. The values set by this command are persistent. This command only
applies to Teller CDMs.

Input Param LPWFSCDMTELLERUPDATE lpTellerUpdate;
typedef struct _wfs_cdm_teller_update
 {
 USHORT usAction;
 LPWFSCDMTELLERDETAILS lpTellerDetails;
 } WFSCDMTELLERUPDATE, *LPWFSCDMTELLERUPDATE;

usAction
The action to be performed specified as one of the following values:

Value Meaning
WFS_CDM_CREATE_TELLER A teller is to be added.
WFS_CDM_MODIFY_TELLER Information about an existing teller is to be

modified.
WFS_CDM_DELETE_TELLER A teller is to be removed.

lpTellerDetails
For a specification of the structure WFSCDMTELLERDETAILS please refer to the
WFS_INF_CDM_TELLER_INFO command.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CDM_INVALIDCURRENCY The specified currency is not currently

available.
WFS_ERR_CDM_INVALIDTELLERID The teller ID is invalid. This error will never

be generated by a Self-Service CDM.
WFS_ERR_CDM_UNSUPPOSITION The position specified is not supported.
WFS_ERR_CDM_EXCHANGEACTIVE The target teller is currently in the middle of

an exchange operation.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a
result of this command:

Value Meaning
WFS_SRVE_CDM_TELLERINFOCHANGED Teller information has been created,

modified or deleted.

Comments None.

CWA 16926-5:2015 (E)

60

5.10 WFS_CMD_CDM_SET_CASH_UNIT_INFO

Description This command is used to adjust information regarding the status and contents of the cash units
present in the CDM.

This command generates the service event WFS_SRVE_CDM_CASHUNITINFOCHANGED to
inform applications that the information for a cash unit has been changed.

This command can only be used to change software counters, thresholds and the application lock.
All other fields in the input structure will be ignored.

The following fields of the WFSCDMCASHUNIT structure may be updated by this command:

ulInitialCount
ulCount
ulRejectCount
ulMinimum
ulMaximum
bAppLock
ulDispensedCount
ulPresentedCount
ulRetractedCount

As may the following fields of the WFSCDMPHCU structure:

ulInitialCount
ulCount
ulRejectCount
ulDispensedCount
ulPresentedCount
ulRetractedCount

Any other changes must be performed via an exchange operation.

If the fields ulCount and ulRejectCount of lppPhysical are set to zero by this command, the
application is indicating that it does not wish counts to be maintained for the physical cash units.
Counts on the logical cash units will still be maintained and can be used by the application. If the
physical counts are set by this command then the logical count will be the sum of the physical
counts and any value sent as a logical count will be ignored.

The values set by this command are persistent.

Input Param LPWFSCDMCUINFO lpCUInfo;

The WFSCDMCUINFO structure is specified in the documentation of the
WFS_INF_CDM_CASH_UNIT_INFO command. All cash units should be included not just the
cash units whose values are to be changed.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CDM_INVALIDTELLERID Invalid teller ID. This error will never be

generated by a Self-Service CDM.
WFS_ERR_CDM_INVALIDCASHUNIT Invalid cash unit.
WFS_ERR_CDM_EXCHANGEACTIVE The CDM is in an exchange state.
WFS_ERR_CDM_CASHUNITERROR A problem occurred with a cash unit. A

WFS_EXEE_CDM_CASHUNITERROR
event will be posted with the details.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a
result of this command:

Value Meaning
WFS_USRE_CDM_CASHUNITTHRESHOLD A threshold condition has been reached in

one of the cash units.

CWA 16926-5:2015 (E)

61

WFS_SRVE_CDM_CASHUNITINFOCHANGED
A cash unit was updated as a result of this
command.

WFS_EXEE_CDM_CASHUNITERROR An error occurred while accessing a cash
unit.

Comments None.

CWA 16926-5:2015 (E)

62

5.11 WFS_CMD_CDM_START_EXCHANGE

Description This command puts the CDM in an exchange state, i.e. a state in which cash units can be emptied,
replenished, removed or replaced. Other than the updates which can be made via the
WFS_CMD_CDM_SET_CASH_UNIT_INFO command all changes to a cash unit must take
place while the cash unit is in an exchange state.

This command returns current cash unit information in the form described in the documentation
of the WFS_INF_CDM_CASH_UNIT_INFO command. This command will also initiate any
physical processes which may be necessary to make the cash units accessible. Before using this
command an application should first have ensured that it has exclusive control of the CDM.

This command may return WFS_SUCCESS even if WFS_EXEE_CDM_CASHUNITERROR
events are generated. If this command returns WFS_SUCCESS or
WFS_ERR_CDM_EXCHANGEACTIVE the CDM is in an exchange state.

While in an exchange state the CDM will process all WFS requests but exclude
WFS[Async]Execute commands, except those listed below:

WFS_CMD_CDM_END_EXCHANGE

WFS_CMD_CDM_SET_MIX_TABLE

WFS_CMD_CDM_RESET

Any other WFS[Async]Execute commands will result in the error
WFS_ERR_CDM_EXCHANGEACTIVE being generated.

If an error is returned by this command, the WFS_INF_CDM_CASH_UNIT_INFO command
should be used to determine cash unit information.

If the CDM is part of a compound device together with a CIM (i.e. a cash recycler), exchange
operations can either be performed separately on each interface to the compound device, or the
entire exchange operation can be done through the CIM interface.

Exchange via CDM and CIM interfaces

If the exchange is performed separately via the CDM and CIM interfaces then these operations
cannot be performed simultaneously. An exchange state must therefore be initiated on each
interface in the following sequence:

CDM

(Lock)
WFS_CMD_CDM_START_EXCHANGE
…exchange action…
WFS_CMD_CDM_END_EXCHANGE
(Unlock)

CIM

(Lock)
WFS_CMD_CIM_START_EXCHANGE
…exchange action…
WFS_CMD_CIM_END_EXCHANGE
(Unlock)

In the case of a recycler, the cash-in cash unit counts are set via the CIM interface and the cash-
out cash unit counts are set via the CDM interface. Recycling cash units can be set via either
interface. However, if the device has recycle units of multiple currencies and/or denominations (or
multiple note identifiers associated with the same denomination) then the CIM interface should be
used for exchange operations which affect these units. Those fields which are not common to both
the CDM and CIM cash units are left unchanged when an exchange (or
WFS_CMD_XXX_SET_CASH_UNIT_INFO) is executed on the other interface. For example if
the CDM is used to set the current counts then the CIM lpNoteNumberList structure is not
changed even if the data becomes inconsistent.

Exchange via the CIM Interface

CWA 16926-5:2015 (E)

63

All cash unit info fields exposed through the CDM interface are also exposed through the CIM
interface, so the entire exchange operation for a recycling device can be achieved through the
CIM interface.

Input Param LPWFSCDMSTARTEX lpStartEx;
typedef struct _wfs_cdm_start_ex
 {
 WORD fwExchangeType;
 USHORT usTellerID;
 USHORT usCount;
 LPUSHORT lpusCUNumList;
 } WFSCDMSTARTEX, *LPWFSCDMSTARTEX;

fwExchangeType
Specifies the type of cash unit exchange operation. This field should be set to one of the following
values:

Value Meaning
WFS_CDM_EXBYHAND The cash units will be replenished manually

either by filling or emptying the cash unit by
hand or by replacing the cash unit.

WFS_CDM_EXTOCASSETTES Items will be moved from the replenishment
container to the bill cash units.

usTellerID
Identifies the teller. If the device is a Self-Service CDM this field is ignored.

usCount
Number of cash units to be exchanged. This is also the size of the array contained in the
lpusCUNumList field.

lpusCUNumList
Pointer to an array of unsigned shorts containing the logical numbers of the cash units to be
exchanged. If an invalid logical number is contained in this list, the command will fail with a
WFS_ERR_CDM_CASHUNITERROR error.

Output Param LPWFSCDMCUINFO lpCUInfo;

The WFSCDMCUINFO structure is specified in the documentation of the
WFS_INF_CDM_CASH_UNIT_INFO command. This is the complete list of cash units not just
the cash units that are to be changed.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CDM_INVALIDTELLERID Invalid teller ID. This error will never be

generated by a Self-Service CDM.
WFS_ERR_CDM_CASHUNITERROR An error occurred with a cash unit while

performing the exchange operation. A
WFS_EXEE_CDM_CASHUNITERROR
event will be posted with the details.

WFS_ERR_CDM_EXCHANGEACTIVE The CDM is already in an exchange state.

Events In addition to the generic events defined in [Ref. 1] the following events can be generated by this
command:

Value Meaning
WFS_EXEE_CDM_CASHUNITERROR A cash unit caused an error.
WFS_EXEE_CDM_NOTEERROR An item detection error has occurred.
WFS_EXEE_CDM_INPUT_P6 Level 2 and/or level 3 notes have been

detected.
WFS_EXEE_CDM_INFO_AVAILABLE Information is available for items being

processed by this operation.

Comments None.

CWA 16926-5:2015 (E)

64

5.12 WFS_CMD_CDM_END_EXCHANGE

Description This command will end the exchange state. If any physical action took place as a result of the
WFS_CMD_CDM_START_EXCHANGE command then this command will cause the cash units
to be returned to their normal physical state. Any necessary device testing will also be initiated.
The application can also use this command to update cash unit information in the form described
in the documentation of the WFS_INF_CDM_CASH_UNIT_INFO command.

When lpCUInfo is not NULL the input parameters to this command may be ignored if the Service
Provider can obtain cash unit information from self-configuring cash units.

If the fields ulCount and ulRejectCount of lppPhysical are set to zero by this command, the
application is indicating that it does not wish counts to be maintained for the physical cash units.
Counts on the logical cash units will still be maintained and can be used by the application. If the
physical counts are set by this command then the logical count will be the sum of the physical
counts and any value sent as a logical count will be ignored.

If an error occurs during the execution of this command, the application must issue
WFS_INF_CDM_CASH_UNIT_INFO to determine the cash unit information.

A WFS_EXEE_CDM_CASHUNITERROR event will be sent for any logical cash unit which
cannot be successfully updated. If no cash units could be updated then a
WFS_ERR_CDM_CASHUNITERROR code will be returned and
WFS_EXEE_CDM_CASHUNITERROR events generated for every logical cash unit that could
not be updated.

Even if this command does not return WFS_SUCCESS the exchange state has ended.

The values set by this command are persistent.

Input Param LPWFSCDMCUINFO lpCUInfo;

The WFSCDMCUINFO structure is specified in the documentation for the
WFS_INF_CDM_CASH_UNIT_INFO command. This pointer can be NULL if the cash unit
information has not changed. If this parameter is not NULL then it must contain the complete list
of cash unit structures, not just the ones that have changed. If this parameter is NULL then any
cash unit in a manipulated state (i.e. usPStatus value of WFS_CDM_STATCUMANIP) will
remain in this state after the command completes.

The usStatus and usPStatus values passed in the cash unit structures included within the lpCUInfo
parameter are ignored and the actual status of the cash units is determined when this command is
executed. When lpCUInfo is not NULL and this command is successfully executed cash units will
no longer be in a manipulated state (i.e. usPStatus will no longer be
WFS_CDM_STATCUMANIP).

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CDM_CASHUNITERROR A cash unit problem occurred that meant no

cash units could be updated. One or more
WFS_EXEE_CDM_CASHUNITERROR
events will be sent with the details.

WFS_ERR_CDM_NOEXCHANGEACTIVE There is no exchange active.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_CDM_CASHUNITERROR A cash unit caused an error.
WFS_SRVE_CDM_CASHUNITINFOCHANGED

A cash unit was changed.
WFS_USRE_CDM_CASHUNITTHRESHOLD A threshold condition has been reached in

one of the cash units.
WFS_EXEE_CDM_NOTEERROR An item detection error has occurred.

CWA 16926-5:2015 (E)

65

WFS_EXEE_CDM_INPUT_P6 Level 2 and/or level 3 notes have been
detected.

WFS_EXEE_CDM_INFO_AVAILABLE Information is available for items being
processed by this operation.

Comments None.

CWA 16926-5:2015 (E)

66

5.13 WFS_CMD_CDM_OPEN_SAFE_DOOR

Description This command unlocks the safe door or starts the time delay count down prior to unlocking the
safe door, if the device supports it. The command completes when the door is unlocked or the
timer has started.

Input Param None.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CDM_EXCHANGEACTIVE The CDM is in an exchange state.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16926-5:2015 (E)

67

5.14 WFS_CMD_CDM_CALIBRATE_CASH_UNIT

Description This command will cause a vendor dependent sequence of hardware events which will calibrate
one or more physical cash units associated with a logical cash unit. This is necessary if a new type
of bank note is put into the cash unit as the command enables the CDM to obtain the measures of
the new bank notes.

If more than one physical cash unit is associated with the cash unit, it is up to the Service Provider
to determine whether all the physical cash units need to be calibrated or if it is sufficient to
calibrate for one physical unit and load the data into the others.

This command cannot be used to calibrate cash units which have been locked by the application.
A WFS_ERR_CDM_CASHUNITERROR code will be returned and a
WFS_EXEE_CDM_CASHUNITERROR event generated.

Input Param LPWFSCDMCALIBRATE lpCalibrateIn;
typedef struct _wfs_cdm_calibrate
 {
 USHORT usNumber;
 USHORT usNumOfBills;
 LPWFSCDMITEMPOSITION *lpPosition;
 } WFSCDMCALIBRATE, *LPWFSCDMCALIBRATE;

usNumber
The logical number of the cash unit.

usNumOfBills
The number of bills to be dispensed during the calibration process.

lpPosition
Specifies where the dispensed items should be moved to. For a description of the
WFSCDMITEMPOSITION structure see section WFS_CMD_CDM_RESET.

Output Param LPWFSCDMCALIBRATE lpCalibrateOut;

The WFSCDMCALIBRATE structure is defined in the Input Param section.

usNumber
The logical number of cash unit which has been calibrated.

usNumOfBills
Number of items that were actually dispensed during the calibration process. This value may be
different from that passed in using the input structure if the cash dispenser always dispenses a
default number of bills. When bills are presented to an output position this is the count of notes
presented to the output position, any other notes rejected during the calibration process are not
included in this count as they will be accounted for within the cash unit counts.

lpPosition
Specifies where the items were moved to during the calibration process.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CDM_CASHUNITERROR A cash unit caused an error. A

WFS_EXEE_CDM_CASHUNITERROR
event will be sent with the details.

WFS_ERR_CDM_UNSUPPOSITION The position specified is not valid.
WFS_ERR_CDM_EXCHANGEACTIVE The CDM is in an exchange state.
WFS_ERR_CDM_INVALIDCASHUNIT The cash unit number specified is not valid.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_USRE_CDM_CASHUNITTHRESHOLD A threshold condition has been reached in

one of the cash units.

CWA 16926-5:2015 (E)

68

WFS_SRVE_CDM_CASHUNITINFOCHANGED
A cash unit was changed.

WFS_EXEE_CDM_CASHUNITERROR A cash unit caused an error.
WFS_SRVE_CDM_ITEMSTAKEN The items were removed.
WFS_EXEE_CDM_NOTEERROR An item detection error has occurred.
WFS_EXEE_CDM_INPUT_P6 Level 2 and/or level 3 notes have been

detected.
WFS_EXEE_CDM_INFO_AVAILABLE Information is available for items being

processed by this operation.

Comments None.

CWA 16926-5:2015 (E)

69

5.15 WFS_CMD_CDM_SET_MIX_TABLE

Description This command is used to set up the mix table specified by the mix number. Mix tables are
persistent and are available to all applications in the system. An amount can be specified as
different denominations within the mix table. If the amount is specified more than once the
Service Provider will attempt to denominate or dispense the first amount in the table. If this does
not succeed (e.g. because of a cash unit failure) the Service Provider will attempt to denominate
or dispense the next amount in the table. The Service Provider can only dispense amounts which
are explicitly mentioned in the mix table.

If a mix number passed in already exists then the information is overwritten with the new
information.

Input Param LPWFSCDMMIXTABLE lpMixTable;

The structure WFSCDMMIXTABLE is defined in the documentation of the command
WFS_INF_CDM_MIX_TABLE.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CDM_INVALIDMIXNUMBER The supplied usMixNumber is reserved for a

predefined mix algorithm.
WFS_ERR_CDM_INVALIDMIXTABLE The contents of at least one of the defined

rows of the mix table is incorrect.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16926-5:2015 (E)

70

5.16 WFS_CMD_CDM_RESET

Description This command is used by the application to perform a hardware reset which will attempt to return
the CDM device to a known good state. This command does not over-ride a lock obtained through
WFS[Async]Lock on another application or service handle.

The device will attempt to move any items found anywhere within the device to the position
specified within the lpResetIn parameter. This may not always be possible because of hardware
problems.

If items are found inside the device the WFS_SRVE_CDM_MEDIADETECTED event will be
generated and will inform the application where the items were actually moved to.

If an exchange state is active then this command will end the exchange state (even if this
command does not complete successfully).

On a recycling device this command is not accepted if a cash-in transaction is active and will
return a WFS_ERR_DEV_NOT_READY error.

If items are moved to a retract cash unit (i.e. a cash unit with usType
WFS_CDM_TYPERETRACTCASSETTE), then the WFSCDMCASHUNIT.ulCount field of the
retract cash unit must be incremented by 1 to specify the number of operations that changed the
count. If items are moved to any other cash unit (e.g. a cash unit with usType
WFS_CDM_TYPEREJECTCASSETTE), then the WFSCDMCASHUNIT.ulCount field of the
cash unit must be incremented either by the number of items that were present at the time the
WFS_CMD_CDM_RESET command was issued or the number counted by the device during the
WFS_CMD_CDM_RESET command. Note that reject bin counts are unreliable.

Input Param If the application does not wish to specify a cash unit or position it can set lpResetIn to NULL. In
this case the Service Provider will determine where to move any items found.

LPWFSCDMITEMPOSITION lpResetIn;
typedef struct _wfs_cdm_itemposition
 {
 USHORT usNumber;
 LPWFSCDMRETRACT lpRetractArea;
 WORD fwOutputPosition;
 } WFSCDMITEMPOSITION *LPWFSCDMITEMPOSITION;

usNumber
In the case of a single cash unit destination this value specifies the cash unit to be used for the
storage of any items found, i.e. when items are to be moved to a reject or retract cash unit. In all
other cases this value must be zero, i.e. when items are to be moved to item cassettes, the
transport, the stacker or an output position.

lpRetractArea
This field is used if items are to be moved to the stacker, the transport, a retract cash unit or to
item cassettes. If items are to be moved to a reject cash unit or to an output position then this field
must be NULL.

typedef struct _wfs_cdm_retract
 {
 WORD fwOutputPosition;
 USHORT usRetractArea;
 USHORT usIndex;
 } WFSCDMRETRACT, *LPWFSCDMRETRACT;

fwOutputPosition
This value will be ignored.

usRetractArea
This value specifies the area to which the items are to be moved to. Possible values are:

CWA 16926-5:2015 (E)

71

Value Meaning
WFS_CDM_RA_RETRACT Items will be moved to a retract cash

unit. In the case where several cash units
of type WFS_CDM_TYPERETRACT-
CASSETTE exist the usNumber field
will define which retract unit the items
will be moved to.

WFS_CDM_RA_TRANSPORT Items will be moved to the transport.
WFS_CDM_RA_STACKER Items will be moved to the intermediate

stacker area.
WFS_CDM_RA_ITEMCASSETTE Items will be moved to the item cassettes,

i.e. cassettes that can be dispensed from.

usIndex
If usRetractArea is set to WFS_CDM_RA_RETRACT this field defines the position inside
the retract cash units into which the cash is to be retracted. usIndex starts with a value of one
(1) for the first retract position and increments by one for each subsequent position. If there
are several logical retract cash units (of type WFS_CDM_TYPERETRACTCASSETTE in
command WFS_INF_CDM_CASH_UNIT_INFO), usIndex would be incremented from the
first position of the first retract cash unit to the last position of the last retract cash unit defined
in WFSCDMCASHINFO. The maximum value of usIndex is the sum of the
WFSCDMCASHUNIT.ulMaximum of each retract cash unit. If usRetractArea is not set to
WFS_CDM_RA_RETRACT the value of this field is ignored.

fwOutputPosition
The output position to which items are to be moved. If the usNumber is non-zero then this field
will be ignored. The value is specified as one of the following values:

Value Meaning
WFS_CDM_POSNULL The default configuration.
WFS_CDM_POSLEFT The left output position.
WFS_CDM_POSRIGHT The right output position.
WFS_CDM_POSCENTER The center output position.
WFS_CDM_POSTOP The top output position.
WFS_CDM_POSBOTTOM The bottom output position.
WFS_CDM_POSFRONT The front output position.
WFS_CDM_POSREAR The rear output position.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1] the following can be generated by this
command:

Value Meaning
WFS_ERR_CDM_CASHUNITERROR A cash unit caused an error. One or more

WFS_EXEE_CDM_CASHUNITERROR
events will be sent with the details.

WFS_ERR_CDM_UNSUPPOSITION The position specified is not supported.
WFS_ERR_CDM_INVALIDCASHUNIT The cash unit number specified is not valid.
WFS_ERR_CDM_POSITION_NOT_EMPTY The retract area specified in usRetractArea is

not empty so the moving of items was not
possible.

WFS_ERR_CDM_INCOMPLETERETRACT Some or all of the items were not retracted
for a reason not covered by other error
codes. The detail will be reported with the
WFS_EXEE_CDM_INCOMPLETERETRA
CT event.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_USRE_CDM_CASHUNITTHRESHOLD A threshold condition has been reached in

one of the cash units.
WFS_EXEE_CDM_CASHUNITERROR A cash unit caused an error.

CWA 16926-5:2015 (E)

72

WFS_SRVE_CDM_MEDIADETECTED Media has been found in the device.
WFS_SRVE_CDM_ITEMSTAKEN The items presented have been removed by

the user.
WFS_EXEE_CDM_INPUT_P6 Level 2 and/or level 3 notes have been

detected.
WFS_EXEE_CDM_INFO_AVAILABLE Information is available for items being

processed by this operation.
WFS_EXEE_CDM_INCOMPLETERETRACT The command has completed with an error

and not all of the items have been retracted.
The detail of what was actually retracted will
be reported in the
WFS_EXEE_CDM_INCOMPLETERETRA
CT event data.

WFS_SRVE_CDM_SHUTTERSTATUSCHANGED
The shutter status has changed.

Comments None.

CWA 16926-5:2015 (E)

73

5.17 WFS_CMD_CDM_TEST_CASH_UNITS

Description This command is used to test cash units following replenishment. All physical cash units which
are testable (i.e. that have a status of WFS_CDM_STATCUOK or WFS_CDM_STATCULOW
and no application lock in the logical cash unit associated with the physical cash unit) are tested.
If the hardware is able to do so tests are continued even if an error occurs while testing one of the
cash units. The command completes with WFS_SUCCESS if the Service Provider successfully
manages to test all of the testable cash units regardless of the outcome of the test. This is the case
if all testable cash units could be tested and a dispense was possible from at least one of the cash
units.

A WFS_EXEE_CDM_CASHUNITERROR event will be sent for any logical cash unit which has
one or more physical cash units which cannot be tested or which fail the test, even if the logical
cash unit has other physical cash units which are successfully tested. If all the cash units could not
be tested or no cash units are testable then a WFS_ERR_CDM_CASHUNITERROR code will be
returned and WFS_EXEE_CDM_CASHUNITERROR events generated for every logical cash
unit that encountered a problem. The operation performed to test the cash units is vendor
dependent. Items may be dispensed or transported into a reject bin as a result of this command.

If no cash units are testable then a WFS_ERR_CDM_CASHUNITERROR code will be returned
and WFS_EXEE_CDM_CASHUNITERROR events will be generated for every cash unit.

Input Param LPWFSCDMITEMPOSITION lpPosition;

Specifies where items dispensed as a result of this command should be moved to. For a
description of the WFSCDMITEMPOSITION structure see section WFS_CMD_CDM_RESET.

If a Service Provider default configuration is to be used this parameter can be NULL.

Output Param LPWFSCDMCUINFO lpCUInfo;

The WFSCDMCUINFO structure is defined in the documentation of the
WFS_INF_CDM_CASH_UNIT_INFO command.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CDM_CASHUNITERROR A cash unit caused a problem that meant all

cash units could not be tested or no cash
units were testable. One or more
WFS_EXEE_CDM_CASHUNITERROR
events will be posted with the details.

WFS_ERR_CDM_UNSUPPOSITION The position specified is not supported.
WFS_ERR_CDM_SHUTTERNOTOPEN The shutter is not open or did not open when

it should have. No items presented.
WFS_ERR_CDM_SHUTTEROPEN The shutter is open when it should be closed.

No items presented.
WFS_ERR_CDM_INVALIDCASHUNIT The cash unit number specified is not valid.
WFS_ERR_CDM_EXCHANGEACTIVE The CDM is in an exchange state.
WFS_ERR_CDM_PRERRORNOITEMS There was an error during the present

operation - no items were presented.
WFS_ERR_CDM_PRERRORITEMS There was an error during the present

operation - at least some of the items were
presented.

WFS_ERR_CDM_PRERRORUNKNOWN There was an error during the present
operation - the position of the items is
unknown. Intervention may be required to
reconcile the cash amount totals.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_USRE_CDM_CASHUNITTHRESHOLD A threshold condition has been reached in

one of the cash units.

CWA 16926-5:2015 (E)

74

WFS_EXEE_CDM_CASHUNITERROR A cash unit has failed the test or a cash unit
was not testable.

WFS_SRVE_CDM_ITEMSTAKEN The items presented have been removed by
the user.

WFS_SRVE_CDM_CASHUNITINFOCHANGED
A cash unit was updated as a result of this
command.

WFS_EXEE_CDM_NOTEERROR An item detection error has occurred.
WFS_EXEE_CDM_INPUT_P6 Level 2 and/or level 3 notes have been

detected.
WFS_SRVE_CDM_SHUTTERSTATUSCHANGED

The shutter status has changed.
WFS_EXEE_CDM_INFO_AVAILABLE Information is available for items being

processed by this operation.

Comments None.

CWA 16926-5:2015 (E)

75

5.18 WFS_CMD_CDM_SET_GUIDANCE_LIGHT

Description This command is used to set the status of the CDM guidance lights. This includes defining the
flash rate, the color and the direction. When an application tries to use a color or direction that is
not supported then the Service Provider will return the generic error
WFS_ERR_UNSUPP_DATA.

Input Param LPWFSCDMSETGUIDLIGHT lpSetGuidLight;
typedef struct _wfs_cdm_set_guidlight
 {
 WORD wGuidLight;
 DWORD dwCommand;
 } WFSCDMSETGUIDLIGHT, *LPWFSCDMSETGUIDLIGHT;

wGuidLight
Specifies the index of the guidance light to set as one of the values defined within the capabilities
section in the dwGuidLights [...] field.

dwCommand
Specifies the state of the guidance light indicator as WFS_CDM_GUIDANCE_OFF or a
combination of the following flags consisting of one type B, optionally one type C and optionally
type D. If no value of type C is specified then the default color is used. The Service Provider
determines which color is used as the default color.

Value Meaning Type
WFS_CDM_GUIDANCE_OFF The light indicator is turned off. A
WFS_CDM_GUIDANCE_SLOW_FLASH The light indicator is set to flash B

slowly.
WFS_CDM_GUIDANCE_MEDIUM_FLASH The light indicator is set to flash B

medium frequency.
WFS_CDM_GUIDANCE_QUICK_FLASH The light indicator is set to flash B

quickly.
WFS_CDM_GUIDANCE_CONTINUOUS The light indicator is turned on B

continuously (steady).
WFS_CDM_GUIDANCE_RED The light indicator color is set C

to red.
WFS_CDM_GUIDANCE_GREEN The light indicator color is set C

to green.
WFS_CDM_GUIDANCE_YELLOW The light indicator color is set C

to yellow.
WFS_CDM_GUIDANCE_BLUE The light indicator color is set C

to blue.
WFS_CDM_GUIDANCE_CYAN The light indicator color is set C

to cyan.
WFS_CDM_GUIDANCE_MA GENTA The light indicator color is set C

to magenta.
WFS_CDM_GUIDANCE_WHITE The light indicator color is set C

to white.
WFS_CDM_GUIDANCE_EXIT The light indicator is set D

to the exit state.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CDM_INVALID_PORT An attempt to set a guidance light to a new

value was invalid because the guidance light
does not exist.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments Guidance light support was added into the CDM primarily to support guidance lights for
workstations where more than one instance of a CDM is present. The original SIU guidance light

CWA 16926-5:2015 (E)

76

mechanism was not able to manage guidance lights for workstations with multiple CDMs. This
command can also be used to set the status of the CDM guidance lights when only one instance of
a CDM is present.

The slow and medium flash rates must not be greater than 2.0 Hz. It should be noted that in order
to comply with American Disabilities Act guidelines only a slow or medium flash rate must be
used.

CWA 16926-5:2015 (E)

77

5.19 WFS_CMD_CDM_POWER_SAVE_CONTROL

Description This command activates or deactivates the power-saving mode.

If the Service Provider receives another execute command while in power saving mode, the
Service Provider automatically exits the power saving mode, and executes the requested
command. If the Service Provider receives an information command while in power saving mode,
the Service Provider will not exit the power saving mode.

Input Param LPWFSCDMPOWERSAVECONTROL lpPowerSaveControl;

typedef struct _wfs_cdm_power_save_control
 {
 USHORT usMaxPowerSaveRecoveryTime;
 } WFSCDMPOWERSAVECONTROL, *LPWFSCDMPOWERSAVECONTROL;

usMaxPowerSaveRecoveryTime
Specifies the maximum number of seconds in which the device must be able to return to its
normal operating state when exiting power save mode. The device will be set to the highest
possible power save mode within this constraint. If usMaxPowerSaveRecoveryTime is set to zero
then the device will exit the power saving mode.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CDM_POW ERSAVETOOSHORT The power saving mode has not been

activated because the device is not able to
resume from the power saving mode within
the specified
usMaxPowerSaveRecoveryTime value.

WFS_ERR_CDM_POW ERSAVEMEDIAPRESENT
The power saving mode has not been
activated because media is present inside the
device.

WFS_ERR_CDM_EXCHANGEACTIVE The CDM is in an exchange state.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_CDM_POW ER_SAVE_CHANGE The power save recovery time has changed.

Comments None.

CWA 16926-5:2015 (E)

78

5.20 WFS_CMD_CDM_PREPARE_DISPENSE

Description On some hardware it can take a significant amount of time for the dispenser to get ready to
dispense media. On this type of hardware the WFS_CMD_CDM_PREPARE_DISPENSE
command can be used to improve transaction performance.

If this command is supported (see the bPrepareDispense capability) then applications can help to
improve the time taken to dispense media by issuing this command as soon as the application
knows that a dispense is likely to happen. This command either prepares the device for the next
dispense operation, or terminates the dispense preparation if the subsequent dispense operation is
no longer required.

With the exception of the WFS_CMD_CDM_DENOMINATE command, which will not stop the
dispense preparation, any execute command on CDM or CIM will automatically stop the dispense
preparation.

If this command is executed and the device is already in the specified wAction state, then this
execution will have no effect and will complete with WFS_SUCCESS.

Input Param LPWFSCDMPREPAREDISPENSE lpPrepareDispense;
typedef struct _wfs_cdm_prepare_dispense
 {
 WORD wAction;
 } WFSCDMPREPAREDISPENSE, *LPWFSCDMPREPAREDISPENSE;

wAction
A value specifying the type of actions. The value is set to one of the following values:

Value Meaning
WFS_CDM_START Initiates the action to prepare for the next

dispense command. This command does not
wait until the device is ready to dispense
before returning a completion event, it
completes as soon as the preparation has
been initiated.

WFS_CDM_STOP Stops the previously activated dispense
preparation. For example the motor of the
transport will be stopped. This should be
used if for some reason the subsequent
dispense operation is no longer required.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CDM_EXCHANGEACTIVE The CDM is in an exchange state.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16926-5:2015 (E)

79

5.21 WFS_CMD_CDM_SET_BLACKLIST

Description This command is used to set all blacklist information. This list is persistent.

Input Param This parameter should be set to NULL if the application wishes to empty the blacklist.

LPWFSCDMBLACKLIST lpBlacklist;

The LPWFSCDMBLACKLIST structure is defined in the documentation of the
WFS_INF_CDM_GET_BLACKLIST command.

lpszVersion
This is an application defined Unicode string that sets the version identifier of the blacklist. This
can be set to NULL if it has no version identifier.

usCount
Number of pointers to WFSCDMBLACKLISTELEMENT structures returned in
lppBlacklistElements.

lppBlacklistElements
Pointer to an array of pointers to WFSCDMBLACKLISTELEMENT structures. Each element
represents a serial number, currency and value combination that a banknote will be matched
against to determine if it is blacklisted.

The WFSCDMBLACKLISTELEMENT structure is defined in the documentation of the
WFS_INF_CDM_GET_BLACKLIST command.

lpszSerialNumber
This Unicode string defines the serial number or a mask of serial numbers of one blacklist
element with the defined currency and value. For a definition of the mask see Section 2.

cCurrencyID
The three character ISO format currency identifier [Ref. 2] of the blacklist element.

ulValue
The value of a blacklist element. This field can be set to zero to match all values.

Output Param None.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments Some classes of counterfeit banknotes have the same or similar serial numbers. By setting a serial
number blacklist financial institutions can react quickly to a threat from counterfeit banknotes.

CWA 16926-5:2015 (E)

80

5.22 WFS_CMD_CDM_SYNCHRONIZE_COMMAND

Description This command is used to reduce response time of a command (e.g. for synchronization with
display) as well as to synchronize actions of the different device classes. This command is
intended to be used only on hardware which is capable of synchronizing functionality within a
single device class or with other device classes.

The list of execute commands which this command supports for synchronization is retrieved in
the lpdwSynchronizableCommands parameter of the WFS_INF_CDM_CAPABILITIES.

This command is optional, i.e, any other command can be called without having to call it in
advance. Any preparation that occurs by calling this command will not affect any other
subsequent command. However, any subsequent execute command other than the one that was
specified in the dwCommand input parameter will execute normally and may invalidate the
pending synchronization. In this case the application should call the
WFS_CMD_CDM_SYNCHRONIZE_COMMAND again in order to start a synchronization.

Input Param LPWFSCDMSYNCHRONIZECOMMAND lpSynchronizeCommand;
typedef struct _wfs_cdm_synchronize_command
 {
 DWORD dwCommand;
 LPVOID lpCmdData;
 } WFSCDMSYNCHRONIZECOMMAND, *LPWFSCDMSYNCHRONIZECOMMAND;

dwCommand
The command ID of the command to be synchronized and executed next.

lpCmdData
Pointer to data or a data structure that represents the parameter that is normally associated with
the command that is specified in dwCommand. For example, if dwCommand is
WFS_CMD_CDM_RETRACT then lpCmdData will point to a WFSCDMRETRACT structure.
This parameter can be NULL if no command input parameter is needed or if this detail is not
needed to synchronize for the command.

It will be device-dependent whether the synchronization is effective or not in the case where the
application synchronizes for a command with this command specifying a parameter but
subsequently executes the synchronized command with a different parameter. This case should
not result in an error; however, the preparation effect could be different from what the application
expects. The application should, therefore, make sure to use the same parameter between
lpCmdData of this command and the subsequent corresponding execute command.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CDM_EXCHANGEACTIVE The CDM is in an exchange state.
WFS_ERR_CDM_COMMANDUNSUPP The command specified in the dwCommand

field is not supported by the Service
Provider.

WFS_ERR_CDM_SYNCHRONIZEUNSUPP The preparation for the command specified
in the dwCommand with the parameter
specified in the lpCmdData is not supported
by the Service Provider.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments For sample flows of this synchronization see the [Ref 1] Appendix C.

CWA 16926-5:2015 (E)

81

6. Events

6.1 WFS_SRVE_CDM_SAFEDOOROPEN

Description This service event is generated when the safe door has been opened.

Event Param None.

Comments None.

CWA 16926-5:2015 (E)

82

6.2 WFS_SRVE_CDM_SAFEDOORCLOSED

Description This service event is generated when the safe door has been closed.

Event Param None.

Comments None.

CWA 16926-5:2015 (E)

83

6.3 WFS_USRE_CDM_CASHUNITTHRESHOLD

Description This user event is generated when a threshold condition has occurred in one of the logical cash
units. If the logical cash unit is a shared cash unit in a compound CIM/CDM then this event can
also be generated as a result of a CIM operation.

This event can be triggered either by hardware sensors in the device or by the logical ulCount
reaching the ulMinimum or ulMaximum value as specified in the WFSCDMCASHUNIT structure.

The application can check if the device has hardware sensors by querying the bHardwareSensor
field of the physical cash unit structure. If any of the physical cash units associated with the
logical cash unit have this capability then threshold events based on hardware sensors will be
triggered if the ulMaximum or ulMinimum values are not used and are set to zero.

In the situation where the cash unit is associated with multiple physical cash units the
WFS_SRVE_CDM_CASHUNITINFOCHANGED event will be generated when any of the
physical cash units reaches the threshold. When the final physical cash unit reaches the threshold,
the WFS_USRE_CDM_CASHUNITTHRESHOLD event as well as the
WFS_SRVE_CDM_CASHUNITINFOCHANGED event will be generated.

Event Param LPWFSCDMCASHUNIT lpCashUnit;

lpCashUnit
Pointer to a WFSCDMCASHUNIT structure, describing the cash unit on which the threshold
condition occurred. See lpCashUnit->usStatus for the current status. For a description of the
WFSCDMCASHUNIT structure, see the definition of the WFS_INF_CDM_CASH_UNIT_INFO
command.

Comments None.

CWA 16926-5:2015 (E)

84

6.4 WFS_SRVE_CDM_CASHUNITINFOCHANGED

Description This service event is generated under the following circumstances:

• It is generated whenever usStatus and/or usPStatus changes. For instance, a physical
cash unit has been removed or inserted, or a physical/logical cash unit has become empty
or full.

• This event will also be generated for every cash unit changed in any way (including
changes to counts, e.g. ulCount, ulRejectCount, ulInitialCount, ulDispensedCount and
ulPresentedCount) as a result of the following commands:

WFS_CMD_CDM_SET_CASH_UNIT_INFO
WFS_CMD_CDM_END_EXCHANGE

• This event will also be fired when any change is made to a cash unit by the following
commands, except for changes to counts (e.g. ulCount, ulRejectCount, ulInitialCount,
ulDispensedCount and ulPresentedCount):

WFS_CMD_CDM_CALIBRATE_CASH_UNIT
WFS_CMD_CDM_TEST_CASH_UNITS

If the cash unit is shared cash unit in a compound CIM/CDM then this event can also be generated
as a result of a CIM operation.

When a physical cash unit is removed, the status of the physical cash unit becomes
WFS_CDM_STATCUMISSING. If there are no physical cash units of the same logical type
remaining the status of the logical type becomes WFS_CDM_STATCUMISSING.

When a physical cash unit is inserted and this physical cash unit is of an existing logical type,
both the logical and the physical cash unit structures will be updated.

If a physical cash unit of a new logical type is inserted the cash unit structure reported by the last
WFS_INF_CDM_CASH_UNIT_INFO command is no longer valid. In that case an application
should issue a WFS_INF_CDM_CASH_UNIT_INFO command after receiving this event to
obtain updated cash unit information.

Event Param LPWFSCDMCASHUNIT lpCashUnit;

lpCashUnit
Pointer to the changed cash unit structure. For a description of the WFSCDMCASHUNIT
structure see the definition of the WFS_INF_CDM_CASH_UNIT_INFO command.

Comments None.

CWA 16926-5:2015 (E)

85

6.5 WFS_SRVE_CDM_TELLERINFOCHANGED

Description This service event is generated when the counts assigned to a teller have changed. This event is
only returned as a result of a WFS_CMD_CDM_SET_TELLER_INFO command.

Event Param LPUSHORT lpusTellerID;

lpusTellerID
Pointer to an unsigned short holding the ID of the teller whose counts have changed.

Comments None.

CWA 16926-5:2015 (E)

86

6.6 WFS_EXEE_CDM_DELAYEDDISPENSE

Description This execute event is generated if the start of a dispense operation has been delayed.

Event Param LPULONG lpulDelay;

lpulDelay
Pointer to an unsigned long holding the time in milliseconds by which the dispense operation will
be delayed.

Comments None.

CWA 16926-5:2015 (E)

87

6.7 WFS_EXEE_CDM_STARTDISPENSE

Description This execute event is generated when a delayed dispense operation begins.

Event Param LPREQUESTID lpReqID;

lpReqID
Pointer to the RequestID of the original dispense command.

Comments None.

CWA 16926-5:2015 (E)

88

6.8 WFS_EXEE_CDM_CASHUNITERROR

Description This execute event is generated if there is a problem with a cash unit during the execution of a
command.

Event Param LPWFSCDMCUERROR lpCashUnitError;

typedef struct _wfs_cdm_cu_error
 {
 WORD wFailure;
 LPWFSCDMCASHUNIT lpCashUnit;
 } WFSCDMCUERROR, *LPWFSCDMCUERROR;

wFailure
Specifies the kind of failure that occurred in the cash unit. Values are:

Value Meaning
WFS_CDM_CASHUNITEMPTY Specified cash unit is empty.
WFS_CDM_CASHUNITERROR Specified cash unit has malfunctioned.
WFS_CDM_CASHUNITFULL Specified cash unit is full.
WFS_CDM_CASHUNITLOCKED Specified cash unit is locked.
WFS_CDM_CASHUNITINVALID Specified cash unit is invalid.
WFS_CDM_CASHUNITCONFIG An attempt has been made to change the

settings of a self-configuring cash unit.
WFS_CDM_CASHUNITNOTCONF Specified cash unit is not configured.

lpCashUnit
Pointer to the cash unit structure that caused the problem. The WFSCDMCASHUNIT structure is
defined in the documentation of the WFS_INF_CDM_CASH_UNIT_INFO command. It is
possible that this pointer may be NULL if the wFailure field is
WFS_CDM_CASHUNITINVALID.

Comments None.

CWA 16926-5:2015 (E)

89

6.9 WFS_SRVE_CDM_ITEMSTAKEN

Description This service event is generated when items presented to the user have been taken. This event may
be generated at any time.

Event Param LPWORD lpfwPosition;

lpfwPosition
Pointer to the output position from which the items have been removed. Possible values are:

Value Meaning
WFS_CDM_POSNULL The default configuration.
WFS_CDM_POSLEFT The left output position.
WFS_CDM_POSRIGHT The right output position.
WFS_CDM_POSCENTER The center output position.
WFS_CDM_POSTOP The top output position.
WFS_CDM_POSBOTTOM The bottom output position.
WFS_CDM_POSFRONT The front output position.
WFS_CDM_POSREAR The rear output position.

Comments None.

CWA 16926-5:2015 (E)

90

6.10 WFS_SRVE_CDM_COUNTS_CHANGED

Description This service event is generated if the device is a compound device together with a CIM and the
counts in a shared cash unit have changed as a result of any CIM operation other than
WFS_CMD_CIM_SET_CASH_UNIT_INFO and WFS_CMD_CIM_END_EXCHANGE.

Event Param LPWFSCDMCOUNTSCHANGED lpCountsChanged;
typedef struct _wfs_cdm_counts_changed
 {
 USHORT usCount;
 LPUSHORT lpusCUNumList;
 } WFSCDMCOUNTSCHANGED, *LPWFSCDMCOUNTSCHANGED;

usCount
The size of lpusCUNumList.

lpusCUNumList
Pointer to a list of the usNumber values of the cash units whose counts have changed.

Comments None.

CWA 16926-5:2015 (E)

91

6.11 WFS_EXEE_CDM_PARTIALDISPENSE

Description This execute event is generated when a dispense operation is divided into several sub-dispense
operations because the hardware capacity of the CDM is exceeded.

Event Param LPUSHORT lpusDispNum;

lpusDispNum
Pointer to an unsigned short holding the number of sub-dispense operations into which the
dispense operation has been divided.

Comments None.

CWA 16926-5:2015 (E)

92

6.12 WFS_EXEE_CDM_SUBDISPENSEOK

Description This execute event is generated when one of the sub-dispense operations into which the dispense
operation was divided has finished successfully.

Event Param LPWFSCDMDENOMINATION lpDenomination;

lpDenomination
The WFSCDMDENOMINATION structure is defined in the documentation of the command
WFS_CMD_CDM_DENOMINATE. Note that in this case the values in this structure report the
amount and number of each denomination dispensed in the sub-dispense operation.

Comments None.

CWA 16926-5:2015 (E)

93

6.13 WFS_EXEE_CDM_INCOMPLETEDISPENSE

Description This execute event is generated when not all of the items specified in a
WFS_CMD_CDM_DISPENSE operation could be dispensed. Some of the items have been
dispensed. If the device has no intermediate stacker then the items that were dispensed will be in
customer access.

Event Param LPWFSCDMDENOMINATION lpDenomination;

lpDenomination
The WFSCDMDENOMINATION structure is defined in the documentation of the command
WFS_CMD_CDM_DENOMINATE. Note that in this case the values in this structure report the
amount and number of each denomination that has actually been dispensed.

Comments None.

CWA 16926-5:2015 (E)

94

6.14 WFS_EXEE_CDM_NOTEERROR

Description This execute event specifies the reason for a note detection error during the execution of a
command.

Event Param LPUSHORT lpusReason;

lpusReason
Pointer to an unsigned short holding the reason for the notes detection error. Possible values are:

Value Meaning
WFS_CDM_DOUBLENOTEDETECTED Double notes have been detected.
WFS_CDM_LONGNOTEDETECTED A long note has been detected.
WFS_CDM_SKEWEDNOTE A skewed note has been detected.
WFS_CDM_INCORRECTCOUNT An item counting error has occurred.
WFS_CDM_NOTESTOOCLOSE Notes have been detected as being too close.
WFS_CDM_OTHERNOTEERROR An item error not covered by the other

values has been detected.
WFS_CDM_SHORTNOTEDETECTED Short notes have been detected.

Comments None.

CWA 16926-5:2015 (E)

95

6.15 WFS_SRVE_CDM_ITEMSPRESENTED

Description This service event specifies that items have been presented to the user during a count operation
and need to be taken.

Event Param None.

Comments None.

CWA 16926-5:2015 (E)

96

6.16 WFS_SRVE_CDM_MEDIADETECTED

Description This service event is generated if media is detected during a reset (WFS_CMD_CDM_RESET).
The parameter on the event informs the application of the position of the media after the reset
completes. If the device has been unable to successfully move the items found then this parameter
will be NULL.

Event Param LPWFSCDMITEMPOSITION *lpItemPosition;

For a description of this parameter see section WFS_CMD_CDM_RESET.

Comments None.

CWA 16926-5:2015 (E)

97

6.17 WFS_EXEE_CDM_INPUT_P6

Description This execute event is generated if level 2 and/or level 3 notes are detected during execution of a
CDM command. Details about the notes detected and their associated signatures are obtained
through the CIM interface.

Event Param None.

Comments None.

CWA 16926-5:2015 (E)

98

6.18 WFS_SRVE_CDM_DEVICEPOSITION

Description This service event reports that the device has changed its position status.

Event Param LPWFSCDMDEVICEPOSITION lpDevicePosition;
typedef struct _wfs_cdm_device_position
 {
 WORD wPosition;
 } WFSCDMDEVICEPOSITION, *LPWFSCDMDEVICEPOSITION;

wPosition
Position of the device as one of the following values:

Value Meaning
WFS_CDM_DEVICEINPOSITION The device is in its normal operating

position.
WFS_CDM_DEVICENOTINPOSITION The device has been removed from its

normal operating position.
WFS_CDM_DEVICEPOSUNKNOWN The position of the device cannot be

determined.

Comments None.

CWA 16926-5:2015 (E)

99

6.19 WFS_SRVE_CDM_POWER_SAVE_CHANGE

Description This service event specifies that the power save recovery time has changed.

Event Param LPWFSCDMPOWERSAVECHANGE lpPowerSaveChange;
typedef struct _wfs_cdm_power_save_change
 {
 USHORT usPowerSaveRecoveryTime;
 } WFSCDMPOWERSAVECHANGE, *LPWFSCDMPOWERSAVECHANGE;

usPowerSaveRecoveryTime
Specifies the actual number of seconds required by the device to resume its normal operational
state. This value is zero if the device exited the power saving mode.

Comments If another device class compounded with this device enters into a power saving mode, this device
will automatically enter into the same power saving mode and this event will be generated.

CWA 16926-5:2015 (E)

100

6.20 WFS_EXEE_CDM_INFO_AVAILABLE

Description This execute event is generated when information is available for items being processed by the
Service Provider.

Event Param LPWFSCDMITEMINFOSUMMARY *lppItemInfoSummary;

Pointer to a NULL-terminated array of pointers to WFSCDMITEMINFOSUMMARY structures,
one structure for every level.
typedef struct _wfs_cdm_item_info_summary
 {
 USHORT usLevel;
 USHORT usNumOfItems;
 } WFSCDMITEMINFOSUMMARY, *LPWFSCDMITEMINFOSUMMARY;

usLevel
Defines the note level. Possible values are:

Value Meaning
WFS_CDM_LEVEL_1 Information for level 1 notes.
WFS_CDM_LEVEL_2 Information for level 2 notes.
WFS_CDM_LEVEL_3 Information for level 3 notes.
WFS_CDM_LEVEL_4 Information for level 4 notes.

usNumOfItems
Number of items classified as usLevel which have information available.

Comments None.

CWA 16926-5:2015 (E)

101

6.21 WFS_EXEE_CDM_INCOMPLETERETRACT

Description This execute event is sent when the WFS_CMD_CDM_RETRACT or
WFS_CMD_CDM_RESET command has completed with an error and not all of the items have
been retracted.

Event Param LPWFSCDMINCOMPLETERETRACT lpIncompleteRetract;
typedef struct _wfs_cdm_incomplete_retract
 {
 WFSCDMITEMNUMBERLIST lpItemNumberList;
 USHORT usReason;
 } WFSCDMINCOMPLETERETRACT, *LPWFSCDMINCOMPLETERETRACT;

lpItemNumberList;
The WFSCDMITEMNUMBERLIST structure is defined in the description of the command
WFS_CMD_CDM_RETRACT. Note that in this case the values in this structure report the
amount and number of each denomination that were successfully moved during the command
prior to the failure.

usReason
The reason for not having retracted items. The value is specified as one of the following values:

Value Meaning
WFS_CDM_IRRETRACTFAILURE The retract has partially failed for a reason

not covered by the other reasons listed in this
event, for example failing to pick an item to
be retracted.

WFS_CDM_IRRETRACTAREAFULL The specified retract area (see input
parameter usRetractArea) has become full
during the retract operation.

WFS_CDM_IRFOREIGNITEMSDETECTED Foreign items have been detected.
WFS_CDM_IRINVALIDBUNCH An invalid bunch of items has been detected,

e.g. it is too large or could not be processed.

Comments None.

CWA 16926-5:2015 (E)

102

6.22 WFS_SRVE_CDM_SHUTTERSTATUSCHANGED

Description Within the limitations of the hardware sensors this service event is generated whenever the status
of a shutter changes. The shutter status can change because of an explicit, implicit or manual
operation depending on how the shutter is operated.

Event Param LPWFSCDMSHUTTERSTATUSCHANGED lpShutterStatusChanged;
typedef struct _wfs_cdm_shutter_status_changed
 {
 WORD fwPosition;
 WORD fwShutter;
 } WFSCDMSHUTTERSTATUSCHANGED, *LPWFSCDMSHUTTERSTATUSCHANGED;

fwPosition
Specifies one of the CDM output positions whose shutter status has changed as one of the
following values:

Value Meaning
WFS_CDM_POSLEFT Left output position.
WFS_CDM_POSRIGHT Right output position.
WFS_CDM_POSCENTER Center output position.
WFS_CDM_POSTOP Top output position.
WFS_CDM_POSBOTTOM Bottom output position.
WFS_CDM_POSFRONT Front output position.
WFS_CDM_POSREAR Rear output position.

fwShutter
Specifies the new state of the shutter as one of the following values:

Value Meaning
WFS_CDM_SHTCLOSED The shutter is closed.
WFS_CDM_SHTOPEN The shutter is opened.
WFS_CDM_SHTJAMMED The shutter is jammed.
WFS_CDM_SHTUNKNOWN Due to a hardware error or other condition,

the state of the shutter cannot be determined.

Comments None.

CWA 16926-5:2015 (E)

103

7. Sub-Dispensing Command Flow

“Sub-dispensing” of bills occur when a WFS_CMD_CDM_DISPENSE execute command is issued and the
required number of bills to be dispensed exceeds the CDM hardware limit for bills that can be dispensed with a
single “hardware level” dispense command. In this situation, the CDM Service Provider determines the number of
“hardware level” dispense commands required and enters what is referred to as a “sub-dispensing” operation until
the full amount has been dispensed. Through use of a “sub-dispensing” operation the application is fully removed
from “hardware level dependencies” as to how many bills can be dispensed based on hardware vendor design
limitations.

The following series of tables illustrate the steps taken on behalf of an end-user, application, XFS Service Provider,
and CDM hardware for sub-dispensing operations: All examples below assume the bPresent field in the
WFS_CMD_CDM_DISPENSE command is set to TRUE.

Sub-Dispensing Is Not Required - Transaction Successful
This table illustrates a successful WFS_CMD_CDM_DISPENSE command where sub-dispensing is not required:

Step End-User Application XFS SP CDM
Hardware

1. User wants to
dispense 40 USD.

2. WFS_CMD_CDM_DISPENSE
command issued.

3. Determines that a single “hardware level”
dispense command can be issued for full
dispense request.

4. “Hardware level” dispense command
issued.

5. WFS_SRVE_CDM_SHUTTERSTATUS
CHANGED(WFS_CDM_SHTOPEN)
event generated

Items
presented.

6. WFS_CMD_CDM_DISPENSE
completes successfully.

7. User takes bills.
8. WFS_SRVE_CDM_ITEMSTAKEN

event generated.
WFS_SRVE_CDM_SHUTTERSTATUS
CHANGED(WFS_CDM_SHTCLOSED)
event generated

CWA 16926-5:2015 (E)

104

Sub-Dispensing Is Required - Command Successful
This table illustrates a successful WFS_CMD_CDM_DISPENSE command where sub-dispensing is required:

Step End-User Application XFS SP CDM
Hardware

1. User wants to
dispense 130 USD in
1 USD
denominations.

2. WFS_CMD_CDM_DISPENSE
command issued.

3. Three “hardware level” dispense
commands are required. CDM hardware
is limited to dispensing 50 bills in any
single “hardware level” dispense.

4. WFS_EXEE_CDM_PARTIAL-
DISPENSE event generated.

5. “Hardware level” dispense command
issued for 50 USD.

6. WFS_SRVE_CDM_SHUTTERSTATUS
CHANGED(WFS_CDM_SHTOPEN)
event generated

Items
presented.

7. WFS_SRVE_CDM_SUBDISPENSEOK
event generated.

8. User takes bills.
9. WFS_SRVE_CDM_ITEMSTAKEN

event generated.
WFS_SRVE_CDM_SHUTTERSTATUS
CHANGED(WFS_CDM_SHTCLOSED)
event generated

10. “Hardware level” dispense command
issued for 50 USD.

11. WFS_SRVE_CDM_SHUTTERSTATUS
CHANGED(WFS_CDM_SHTOPEN)
event generated

Items
presented.

12. WFS_SRVE_CDM_SUBDISPENSE_O
K event generated.

13. User takes bills.
14. WFS_SRVE_CDM_ITEMSTAKEN

event generated.
WFS_SRVE_CDM_SHUTTERSTATUS
CHANGED(WFS_CDM_SHTCLOSED)
event generated

15. “Hardware level” dispense command
issued for 30 USD.

16. WFS_SRVE_CDM_SHUTTERSTATUS
CHANGED(WFS_CDM_SHTOPEN)
event generated

Items
presented.

17. WFS_SRVE_CDM_SUBDISPENSEOK
event generated.

18. WFS_CMD_CDM_DISPENSE
completes successfully.

19. User takes bills.
20. WFS_SRVE_CDM_ITEMSTAKEN

event generated.
WFS_SRVE_CDM_SHUTTERSTATUS
CHANGED(WFS_CDM_SHTCLOSED)
event generated

CWA 16926-5:2015 (E)

105

Sub-Dispensing Is Required - Command Unsuccessful
This table illustrates an unsuccessful WFS_CMD_CDM_DISPENSE command where sub-dispensing is required
and the end-user does not take the bills during the second “hardware level” dispense, resulting in a timeout
condition.

Step End-User Application XFS SP CDM
Hardware

1. User wants to
dispense 130 USD in
1 USD
denominations.

2. WFS_CMD_CDM_DISPENSE
command issued.

3. Three “hardware level” dispense
commands are required. CDM hardware
is limited to dispensing 50 bills in any
single “hardware level” dispense
command.

4. WFS_EXEE_CDM_PARTIAL-
DISPENSE event generated.

5. “Hardware level” dispense command
issued for 50 USD.

6. WFS_SRVE_CDM_SHUTTERSTATUS
CHANGED(WFS_CDM_SHTOPEN)
event generated

Items
presented

7. WFS_SRVE_CDM_SUBDISPENSEOK
event generated.

8. User takes bills.
9. WFS_SRVE_CDM_ITEMSTAKEN

event generated.
WFS_SRVE_CDM_SHUTTERSTATUS
CHANGED(WFS_CDM_SHTCLOSED)
event generated

10. “Hardware level” dispense command
issued for 50 USD.

11. WFS_SRVE_CDM_SHUTTERSTATUS
CHANGED(WFS_CDM_SHTOPEN)
event generated

Items
presented.

12. WFS_SRVE_CDM_SUBDISPENSEOK
event generated.

13. User does not take
bills.

14. Timeout occurs waiting on end-user to
take bills.

15. WFS_CMD_CDM_DISPENSE
completes with
WFS_ERR_CDM_ITEMSNOT-
TAKEN.

CWA 16926-5:2015 (E)

106

8. Rules for Cash Unit Exchange

The XFS Start and End Exchange commands should be used by applications to supply the latest information with
regards to cash unit replenishment state and content. This guarantees a certain amount of control to an application
as to which denominations are stored in which position as well as the general physical state of the logical/physical
cash units.

If a cash unit is removed from the CDM outside of the Start/End Exchange operations and subsequently reinserted
the status of the physical cash unit should be set to WFS_CDM_STATCUMANIP to indicate to the application that
the physical cash unit has been removed, reinserted and possibly tampered with. While the cash unit has this status
the Service Provider should not attempt to use it as part of a Dispense operation. The
WFS_CDM_STATCUMANIP status should not change until the next Start/End Exchange operation is performed,
even if the cash unit is replaced in its original position.

If all the physical cash units belonging to a logical cash unit are manipulated the parent logical cash unit that the
physical cash units belong to should also have its status set to WFS_CDM_STATCUMANIP.

When a cash unit is removed and/or replaced outside of the Start/End Exchange operations the original logical cash
unit information such as the values, currency and counts should be preserved in the Cash Unit Info structure
reported to the application for accounting purposes until the next Start/End Exchange operations, even if the cash
unit physically contains a different denomination.

CWA 16926-5:2015 (E)

107

9. Events Associated with Cash Unit Status Changes

The following instances illustrate which events will be posted when the cash unit statuses change. In all cases
bHardwareSensor == TRUE, ulMaximum == 0 and ulMinimum == 0.

9.1 One Physical Cash Unit Goes LOW

The following table describes a dispense transaction case where the status of a physical cash unit only changes from
WFS_CDM_STATCUOK to WFS_CDM_STATCULOW.

• Logical CU 1 consists of Physical CU 1 and Physical CU 2

 Action Status/Event
1. Logical CU 1: WFS_CDM_STATCUOK

- Physical CU 1: WFS_CDM_STATCUOK
- Physical CU 2: WFS_CDM_STATCUOK

2. A user withdraws items.
3. The device dispenses and presents the items from

Physical CU 1, whose status changes to low.

4. The status of Logical CU 1 does not change. Logical CU 1: WFS_CDM_STATCUOK
- Physical CU 1: WFS_CDM_STATCULOW
- Physical CU 2: WFS_CDM_STATCUOK

WFS_SRVE_CDM_CASHUNITINFOCHANGED

CWA 16926-5:2015 (E)

108

9.2 Last Physical Cash Unit Goes LOW

The following table describes a dispense transaction case where the status of a logical cash unit changes from
WFS_CDM_STATCUOK to WFS_CDM_STATCULOW.

• Logical CU 1 consists of Physical CU 1 and Physical CU 2

 Action Status/Event
1. Logical CU 1: WFS_CDM_STATCUOK

- Physical CU 1: WFS_CDM_STATCULOW
- Physical CU 2: WFS_CDM_STATCUOK

2. A user withdraws items.
3. The device dispenses and presents the items from

Physical CU 2, whose status changes to low.

4. As a result, the status of Logical CU 1 changes to
low.

Logical CU 1: WFS_CDM_STATCULOW
- Physical CU 1: WFS_CDM_STATCULOW
- Physical CU 2: WFS_CDM_STATCULOW

WFS_SRVE_CDM_CASHUNITINFOCHANGED
WFS_USRE_CDM_CASHUNITTHRESHOLD

CWA 16926-5:2015 (E)

109

9.3 One Physical Cash Unit Goes INOP

The following table describes a dispense transaction case where the status of a logical cash unit changes from
WFS_CDM_STATCUOK to WFS_CDM_STATCULOW as the result of a physical cash unit failure.

• Logical CU 1 consists of Physical CU 1 and Physical CU 2

• The device has ability to continue transaction when a problem occurs in a physical cash unit.

 Action Status/Event
1. Logical CU 1: WFS_CDM_STATCUOK

- Physical CU 1: WFS_CDM_STATCUOK
- Physical CU 2: WFS_CDM_STATCULOW

2. A user withdraws items.
3. The device tries to dispense the items from

Physical CU 1; however, a problem occurs in the
cash unit, whose status changes to inoperative.

4. The device complements the items by dispensing
from Physical CU 2.

5. As a result, the status of Logical CU 1 changes to
low.

Logical CU 1: WFS_CDM_STATCULOW
- Physical CU 1: WFS_CDM_STATCUINOP
- Physical CU 2: WFS_CDM_STATCULOW

WFS_EXEE_CDM_CASHUNITERROR
WFS_SRVE_CDM_CASHUNITINFOCHANGED
WFS_USRE_CDM_CASHUNITTHRESHOLD

CWA 16926-5:2015 (E)

110

9.4 Last Physical Cash Unit Goes EMPTY

The following table describes a dispense transaction case where the status of a logical cash unit changes from
WFS_CDM_STATCULOW to WFS_CDM_STATCUEMPTY.

• Logical CU 1 consists of Physical CU 1 and Physical CU 2

 Action Status/Event
1. Logical CU 1: WFS_CDM_STATCULOW

- Physical CU 1: WFS_CDM_STATCUEMPTY
- Physical CU 2: WFS_CDM_STATCULOW

2. A user withdraws items.
3. The device dispenses and presents the items from

Physical CU 2, whose status changes to empty.

4. As a result, the status of Logical CU 1 changes to
empty.

Logical CU 1: WFS_CDM_STATCUEMPTY
- Physical CU 1: WFS_CDM_STATCUEMPTY
- Physical CU 2: WFS_CDM_STATCUEMPTY

WFS_SRVE_CDM_CASHUNITINFOCHANGED

CWA 16926-5:2015 (E)

111

10. Multiple Dispense Command Flow

The Multiple Dispense feature occurs when a WFS_CMD_CDM_DISPENSE execute command is issued multiple
times to place items on the stacker. Adding to the stacked items with a second or third dispense may be required
where the initially picked Cash Unit fails to fulfill the full dispense request. The application can choose to add to
the stacker from another Cash Unit to fulfill the request. Additionally this feature covers the requirement to
dispense multiple currencies with a mix number other than WFS_CDM_INDIVIDUAL. Multiple currencies can be
picked separately with the bunch of items assembled on the stacker before presentation to the customer.

Applications can refer to WFSCDMCAPS.fwMoveItems to determine if the Service Provider supports the feature. If
a Service Provider supports this feature but an application does not wish to use it, the application should check
WFSCDMSTATUS.fwIntermediateStacker to determine whether items on the stacker need to be purged prior to a
dispense.

Multiple Dispense Example ‘Out of Notes’

In the following example WFSCDMCAPS.fwMoveItems reports WFS_CDM_TOSTACKER. The CDM has 2
logical Cash Units. Cash Unit 1 has 20USD, Cash Unit 2 has 10USD. Cash Unit 1 has only 2 notes left.
This table illustrates multiple WFS_CMD_CDM_DISPENSE commands to fulfill a dispense request.

Step End-User Application XFS SP CDM

Hardware
1. User wants to

dispense 60
USD.

WFS_CMD_CDM_DISPENSE
usMixNumber =
WFS_CDM_INDIVIDUAL
bPresent = FALSE

Request USD20x3 from Cash Unit 1.

 2 of 3 items
picked and
stacked.

2. WFS_EXEE_CDM_INCOMPLETEDISP
ENSE event.

lpDenomination output records that
2x20USD were stacked.

3. WFS_CMD_CDM_DISPENSE completes
WFS_ERR_CDM_NOTDISPENSABLE

4. The application decides that the
dispense can be fulfilled and calculates
the 20USD shortfall can be made up
from the 10USD Cash Unit.

WFS_CMD_CDM_DISPENSE
usMixNumber =
WFS_CDM_INDIVIDUAL
bPresent = FALSE

Request USD10x2 from Cash Unit 2.

 2 of 2 notes
picked and
stacked
together with
the items
already
stacked.

5. WFS_CMD_CDM_DISPENSE completes
WFS_SUCCESS
lpDenomination output records that
2x10USD were stacked.

6. Call WFS_CMD_CDM_PRESENT WFS_SRVE_CDM_SHUTTERSTATUS-
CHANGED(WFS_CDM_SHTOPEN)
event generated

Items
presented.

7. WFS_CMD_CDM_PRESENT completes
WFS_SUCCESS

8. User takes
bills.

 WFS_SRVE_CDM_ITEMSTAKEN event
generated.
WFS_SRVE_CDM_SHUTTERSTATUS-
CHANGED(WFS_CDM_SHTCLOSED)
event generated

CWA 16926-5:2015 (E)

112

Multiple Dispense Example ‘Multiple Currency with Vendor Mix’

In the following example WFSCDMCAPS.fwMoveItems reports WFS_CDM_TOSTACKER.
The CDM has 2 logical Cash Units with good supply of notes in each. Cash Unit 1 has 20CHF, Cash Unit 2 has
20EUR.

This table illustrates multiple WFS_CMD_CDM_DISPENSE commands to fulfill a dispense request of EUR and
CHF notes with vendor defined mix number. WFSCDMMIXTYPE.usMixNumber = 1.

Step End-User Application XFS SP CDM

Hardware
1. User wants to

dispense 100
EUR and 100
CHF.

Application will split the dispense
stacking all money before a single
present.

WFS_CMD_CDM_DISPENSE
usMixNumber = 1
bPresent = FALSE

Request 100 EUR.

 100 EUR
picked and
stacked.

2. WFS_CMD_CDM_DISPENSE
completes WFS_SUCCESS
lpDenomination output records that
5x20EUR were stacked.

3. WFS_CMD_CDM_DISPENSE
usMixNumber =
WFS_CDM_INDIVIDUAL
bPresent = FALSE

Request 100 CHF.

 100 CHF
picked and
stacked.

4. WFS_CMD_CDM_DISPENSE
completes WFS_SUCCESS
lpDenomination output records that
5x20CHF were stacked.

5. Call WFS_CMD_CDM_PRESENT WFS_SRVE_CDM_SHUTTERSTATUS
CHANGED(WFS_CDM_SHTOPEN)
event generated

Items
presented.

6. WFS_CMD_CDM_PRESENT completes
WFS_SUCCESS

7. User takes
bills.

 WFS_SRVE_CDM_ITEMSTAKEN
event generated.
WFS_SRVE_CDM_SHUTTERSTATUS
CHANGED(WFS_CDM_SHTCLOSED)
event generated

CWA 16926-5:2015 (E)

113

11. C - Header file

/**
* *
* xfscdm.h XFS - Cash Dispenser (CDM) definitions *
* *
* Version 3.30 (March 19 2015) *
* *
**/

#ifndef __INC_XFSCDM__H
#define __INC_XFSCDM__H

#ifdef __cplusplus
extern "C" {
#endif

#include <xfsapi.h>

/* be aware of alignment */
#pragma pack (push, 1)

/* values of WFSCDMCAPS.wClass */

#define WFS_SERVICE_CLASS_CDM (3)
#define WFS_SERVICE_CLASS_VERSION_CDM (0x1E03) /* Version 3.30 */
#define WFS_SERVICE_CLASS_NAME_CDM "CDM"

#define CDM_SERVICE_OFFSET (WFS_SERVICE_CLASS_CDM * 100)

/* CDM Info Commands */

#define WFS_INF_CDM_STATUS (CDM_SERVICE_OFFSET + 1)
#define WFS_INF_CDM_CAPABILITIES (CDM_SERVICE_OFFSET + 2)
#define WFS_INF_CDM_CASH_UNIT_INFO (CDM_SERVICE_OFFSET + 3)
#define WFS_INF_CDM_TELLER_INFO (CDM_SERVICE_OFFSET + 4)
#define WFS_INF_CDM_CURRENCY_EXP (CDM_SERVICE_OFFSET + 6)
#define WFS_INF_CDM_MIX_TYPES (CDM_SERVICE_OFFSET + 7)
#define WFS_INF_CDM_MIX_TABLE (CDM_SERVICE_OFFSET + 8)
#define WFS_INF_CDM_PRESENT_STATUS (CDM_SERVICE_OFFSET + 9)
#define WFS_INF_CDM_GET_ITEM_INFO (CDM_SERVICE_OFFSET + 10)
#define WFS_INF_CDM_GET_BLACKLIST (CDM_SERVICE_OFFSET + 11)
#define WFS_INF_CDM_GET_ALL_ITEMS_INFO (CDM_SERVICE_OFFSET + 12)

/* CDM Execute Commands */

#define WFS_CMD_CDM_DENOMINATE (CDM_SERVICE_OFFSET + 1)
#define WFS_CMD_CDM_DISPENSE (CDM_SERVICE_OFFSET + 2)
#define WFS_CMD_CDM_PRESENT (CDM_SERVICE_OFFSET + 3)
#define WFS_CMD_CDM_REJECT (CDM_SERVICE_OFFSET + 4)
#define WFS_CMD_CDM_RETRACT (CDM_SERVICE_OFFSET + 5)
#define WFS_CMD_CDM_OPEN_SHUTTER (CDM_SERVICE_OFFSET + 7)
#define WFS_CMD_CDM_CLOSE_SHUTTER (CDM_SERVICE_OFFSET + 8)
#define WFS_CMD_CDM_SET_TELLER_INFO (CDM_SERVICE_OFFSET + 9)
#define WFS_CMD_CDM_SET_CASH_UNIT_INFO (CDM_SERVICE_OFFSET + 10)
#define WFS_CMD_CDM_START_EXCHANGE (CDM_SERVICE_OFFSET + 11)
#define WFS_CMD_CDM_END_EXCHANGE (CDM_SERVICE_OFFSET + 12)
#define WFS_CMD_CDM_OPEN_SAFE_DOOR (CDM_SERVICE_OFFSET + 13)
#define WFS_CMD_CDM_CALIBRATE_CASH_UNIT (CDM_SERVICE_OFFSET + 15)
#define WFS_CMD_CDM_SET_MIX_TABLE (CDM_SERVICE_OFFSET + 20)
#define WFS_CMD_CDM_RESET (CDM_SERVICE_OFFSET + 21)
#define WFS_CMD_CDM_TEST_CASH_UNITS (CDM_SERVICE_OFFSET + 22)
#define WFS_CMD_CDM_COUNT (CDM_SERVICE_OFFSET + 23)
#define WFS_CMD_CDM_SET_GUIDANCE_LIGHT (CDM_SERVICE_OFFSET + 24)
#define WFS_CMD_CDM_POWER_SAVE_CONTROL (CDM_SERVICE_OFFSET + 25)
#define WFS_CMD_CDM_PREPARE_DISPENSE (CDM_SERVICE_OFFSET + 26)
#define WFS_CMD_CDM_SET_BLACKLIST (CDM_SERVICE_OFFSET + 27)
#define WFS_CMD_CDM_SYNCHRONIZE_COMMAND (CDM_SERVICE_OFFSET + 28)

CWA 16926-5:2015 (E)

114

/* CDM Messages */

#define WFS_SRVE_CDM_SAFEDOOROPEN (CDM_SERVICE_OFFSET + 1)
#define WFS_SRVE_CDM_SAFEDOORCLOSED (CDM_SERVICE_OFFSET + 2)
#define WFS_USRE_CDM_CASHUNITTHRESHOLD (CDM_SERVICE_OFFSET + 3)
#define WFS_SRVE_CDM_CASHUNITINFOCHANGED (CDM_SERVICE_OFFSET + 4)
#define WFS_SRVE_CDM_TELLERINFOCHANGED (CDM_SERVICE_OFFSET + 5)
#define WFS_EXEE_CDM_DELAYEDDISPENSE (CDM_SERVICE_OFFSET + 6)
#define WFS_EXEE_CDM_STARTDISPENSE (CDM_SERVICE_OFFSET + 7)
#define WFS_EXEE_CDM_CASHUNITERROR (CDM_SERVICE_OFFSET + 8)
#define WFS_SRVE_CDM_ITEMSTAKEN (CDM_SERVICE_OFFSET + 9)
#define WFS_EXEE_CDM_PARTIALDISPENSE (CDM_SERVICE_OFFSET + 10)
#define WFS_EXEE_CDM_SUBDISPENSEOK (CDM_SERVICE_OFFSET + 11)
#define WFS_SRVE_CDM_ITEMSPRESENTED (CDM_SERVICE_OFFSET + 13)
#define WFS_SRVE_CDM_COUNTS_CHANGED (CDM_SERVICE_OFFSET + 14)
#define WFS_EXEE_CDM_INCOMPLETEDISPENSE (CDM_SERVICE_OFFSET + 15)
#define WFS_EXEE_CDM_NOTEERROR (CDM_SERVICE_OFFSET + 16)
#define WFS_SRVE_CDM_MEDIADETECTED (CDM_SERVICE_OFFSET + 17)
#define WFS_EXEE_CDM_INPUT_P6 (CDM_SERVICE_OFFSET + 18)
#define WFS_SRVE_CDM_DEVICEPOSITION (CDM_SERVICE_OFFSET + 19)
#define WFS_SRVE_CDM_POWER_SAVE_CHANGE (CDM_SERVICE_OFFSET + 20)
#define WFS_EXEE_CDM_INFO_AVAILABLE (CDM_SERVICE_OFFSET + 21)
#define WFS_EXEE_CDM_INCOMPLETERETRACT (CDM_SERVICE_OFFSET + 22)
#define WFS_SRVE_CDM_SHUTTERSTATUSCHANGED (CDM_SERVICE_OFFSET + 23)

/* values of WFSCDMSTATUS.fwDevice */

#define WFS_CDM_DEVONLINE WFS_STAT_DEVONLINE
#define WFS_CDM_DEVOFFLINE WFS_STAT_DEVOFFLINE
#define WFS_CDM_DEVPOWEROFF WFS_STAT_DEVPOWEROFF
#define WFS_CDM_DEVNODEVICE WFS_STAT_DEVNODEVICE
#define WFS_CDM_DEVHWERROR WFS_STAT_DEVHWERROR
#define WFS_CDM_DEVUSERERROR WFS_STAT_DEVUSERERROR
#define WFS_CDM_DEVBUSY WFS_STAT_DEVBUSY
#define WFS_CDM_DEVFRAUDATTEMPT WFS_STAT_DEVFRAUDATTEMPT
#define WFS_CDM_DEVPOTENTIALFRAUD WFS_STAT_DEVPOTENTIALFRAUD

/* values of WFSCDMSTATUS.fwSafeDoor */

#define WFS_CDM_DOORNOTSUPPORTED (1)
#define WFS_CDM_DOOROPEN (2)
#define WFS_CDM_DOORCLOSED (3)
#define WFS_CDM_DOORUNKNOWN (5)

/* values of WFSCDMSTATUS.fwDispenser */

#define WFS_CDM_DISPOK (0)
#define WFS_CDM_DISPCUSTATE (1)
#define WFS_CDM_DISPCUSTOP (2)
#define WFS_CDM_DISPCUUNKNOWN (3)

/* values of WFSCDMSTATUS.fwIntermediateStacker */

#define WFS_CDM_ISEMPTY (0)
#define WFS_CDM_ISNOTEMPTY (1)
#define WFS_CDM_ISNOTEMPTYCUST (2)
#define WFS_CDM_ISNOTEMPTYUNK (3)
#define WFS_CDM_ISUNKNOWN (4)
#define WFS_CDM_ISNOTSUPPORTED (5)

/* Size and max index of dwGuidLights array */

#define WFS_CDM_GUIDLIGHTS_SIZE (32)
#define WFS_CDM_GUIDLIGHTS_MAX (WFS_CDM_GUIDLIGHTS_SIZE - 1)

/* Indices of WFSCDMSTATUS.dwGuidLights [...]
 WFSCDMCAPS.dwGuidLights [...] */

CWA 16926-5:2015 (E)

115

#define WFS_CDM_GUIDANCE_POSOUTNULL (0)
#define WFS_CDM_GUIDANCE_POSOUTLEFT (1)
#define WFS_CDM_GUIDANCE_POSOUTRIGHT (2)
#define WFS_CDM_GUIDANCE_POSOUTCENTER (3)
#define WFS_CDM_GUIDANCE_POSOUTTOP (4)
#define WFS_CDM_GUIDANCE_POSOUTBOTTOM (5)
#define WFS_CDM_GUIDANCE_POSOUTFRONT (6)
#define WFS_CDM_GUIDANCE_POSOUTREAR (7)

/* Values of WFSCDMSTATUS.dwGuidLights [...]
 WFSCDMCAPS.dwGuidLights [...] */

#define WFS_CDM_GUIDANCE_OFF (0x00000001)
#define WFS_CDM_GUIDANCE_SLOW_FLASH (0x00000004)
#define WFS_CDM_GUIDANCE_MEDIUM_FLASH (0x00000008)
#define WFS_CDM_GUIDANCE_QUICK_FLASH (0x00000010)
#define WFS_CDM_GUIDANCE_CONTINUOUS (0x00000080)
#define WFS_CDM_GUIDANCE_RED (0x00000100)
#define WFS_CDM_GUIDANCE_GREEN (0x00000200)
#define WFS_CDM_GUIDANCE_YELLOW (0x00000400)
#define WFS_CDM_GUIDANCE_BLUE (0x00000800)
#define WFS_CDM_GUIDANCE_CYAN (0x00001000)
#define WFS_CDM_GUIDANCE_MAGENTA (0x00002000)
#define WFS_CDM_GUIDANCE_WHITE (0x00004000)
#define WFS_CDM_GUIDANCE_EXIT (0x00200000)

/* Values of WFSCDMSTATUS.dwGuidLights [...]
 WFSCDMCAPS.dwGuidLights [...] */

#define WFS_CDM_GUIDANCE_NOT_AVAILABLE (0x0000)

/* values of WFSCDMSTATUS.wDevicePosition
 WFSCDMDEVICEPOSITION.wPosition */

#define WFS_CDM_DEVICEINPOSITION (0)
#define WFS_CDM_DEVICENOTINPOSITION (1)
#define WFS_CDM_DEVICEPOSUNKNOWN (2)
#define WFS_CDM_DEVICEPOSNOTSUPP (3)

/* values of WFSCDMOUTPOS.fwShutter */

#define WFS_CDM_SHTCLOSED (0)
#define WFS_CDM_SHTOPEN (1)
#define WFS_CDM_SHTJAMMED (2)
#define WFS_CDM_SHTUNKNOWN (3)
#define WFS_CDM_SHTNOTSUPPORTED (4)

/* values of WFSCDMOUTPOS.fwPositionStatus */

#define WFS_CDM_PSEMPTY (0)
#define WFS_CDM_PSNOTEMPTY (1)
#define WFS_CDM_PSUNKNOWN (2)
#define WFS_CDM_PSNOTSUPPORTED (3)

/* values of WFSCDMOUTPOS.fwTransport */

#define WFS_CDM_TPOK (0)
#define WFS_CDM_TPINOP (1)
#define WFS_CDM_TPUNKNOWN (2)
#define WFS_CDM_TPNOTSUPPORTED (3)

/* values of WFSCDMOUTPOS.fwTransportStatus */

#define WFS_CDM_TPSTATEMPTY (0)
#define WFS_CDM_TPSTATNOTEMPTY (1)
#define WFS_CDM_TPSTATNOTEMPTYCUST (2)
#define WFS_CDM_TPSTATNOTEMPTY_UNK (3)
#define WFS_CDM_TPSTATNOTSUPPORTED (4)

CWA 16926-5:2015 (E)

116

/* values of WFSCDMOUTPOS.fwJammedShutterPosition */

#define WFS_CDM_SHUTTERPOS_NOTSUPPORTED (0)
#define WFS_CDM_SHUTTERPOS_NOTJAMMED (1)
#define WFS_CDM_SHUTTERPOS_OPEN (2)
#define WFS_CDM_SHUTTERPOS_PARTIALLY_OPEN (3)
#define WFS_CDM_SHUTTERPOS_CLOSED (4)
#define WFS_CDM_SHUTTERPOS_UNKNOWN (5)

/* values of WFSCDMCAPS.fwType */

#define WFS_CDM_TELLERBILL (0)
#define WFS_CDM_SELFSERVICEBILL (1)
#define WFS_CDM_TELLERCOIN (2)
#define WFS_CDM_SELFSERVICECOIN (3)

/* values of WFSCDMCAPS.fwRetractAreas,
 WFSCDMRETRACT.usRetractArea */

#define WFS_CDM_RA_RETRACT (0x0001)
#define WFS_CDM_RA_TRANSPORT (0x0002)
#define WFS_CDM_RA_STACKER (0x0004)
#define WFS_CDM_RA_REJECT (0x0008)
#define WFS_CDM_RA_NOTSUPP (0x0010)
#define WFS_CDM_RA_ITEMCASSETTE (0x0020)

/* values of WFSCDMCAPS.fwRetractTransportActions,
 WFSCDMCAPS.fwRetractStackerActions */

#define WFS_CDM_PRESENT (0x0001)
#define WFS_CDM_RETRACT (0x0002)
#define WFS_CDM_REJECT (0x0004)
#define WFS_CDM_NOTSUPP (0x0008)
#define WFS_CDM_ITEMCASSETTE (0x0010)

/* values of WFSCDMCAPS.fwMoveItems */

#define WFS_CDM_FROMCU (0x0001)
#define WFS_CDM_TOCU (0x0002)
#define WFS_CDM_TOTRANSPORT (0x0004)
#define WFS_CDM_TOSTACKER (0x0008)

/* values of WFSCDMCASHUNIT.usType */

#define WFS_CDM_TYPENA (1)
#define WFS_CDM_TYPEREJECTCASSETTE (2)
#define WFS_CDM_TYPEBILLCASSETTE (3)
#define WFS_CDM_TYPECOINCYLINDER (4)
#define WFS_CDM_TYPECOINDISPENSER (5)
#define WFS_CDM_TYPERETRACTCASSETTE (6)
#define WFS_CDM_TYPECOUPON (7)
#define WFS_CDM_TYPEDOCUMENT (8)
#define WFS_CDM_TYPEREPCONTAINER (11)
#define WFS_CDM_TYPERECYCLING (12)

/* values of WFSCDMCASHUNIT.usStatus */

#define WFS_CDM_STATCUOK (0)
#define WFS_CDM_STATCUFULL (1)
#define WFS_CDM_STATCUHIGH (2)
#define WFS_CDM_STATCULOW (3)
#define WFS_CDM_STATCUEMPTY (4)
#define WFS_CDM_STATCUINOP (5)
#define WFS_CDM_STATCUMISSING (6)
#define WFS_CDM_STATCUNOVAL (7)
#define WFS_CDM_STATCUNOREF (8)
#define WFS_CDM_STATCUMANIP (9)

/* values of WFSCDMMIXTYPE.usMixType */

CWA 16926-5:2015 (E)

117

#define WFS_CDM_MIXALGORITHM (1)
#define WFS_CDM_MIXTABLE (2)

/* values of WFSCDMMIXTYPE.usMixNumber */

#define WFS_CDM_INDIVIDUAL (0)

/* values of WFSCDMMIXTYPE.usSubType (predefined mix algorithms) */

#define WFS_CDM_MIX_MINIMUM_NUMBER_OF_BILLS (1)
#define WFS_CDM_MIX_EQUAL_EMPTYING_OF_CASH_UNITS (2)
#define WFS_CDM_MIX_MAXIMUM_NUMBER_OF_CASH_UNITS (3)

/* values of WFSCDMPRESENTSTATUS.wPresentState */

#define WFS_CDM_PRESENTED (1)
#define WFS_CDM_NOTPRESENTED (2)
#define WFS_CDM_UNKNOWN (3)

/* values of WFSCDMDISPENSE.fwPosition,
 WFSCDMCAPS.fwPositions,
 WFSCDMOUTPOS.fwPosition,
 WFSCDMTELLERDETAILS.fwOutputPosition,
 WFSCDMPHYSICALCU.fwPosition */

#define WFS_CDM_POSNULL (0x0000)
#define WFS_CDM_POSLEFT (0x0001)
#define WFS_CDM_POSRIGHT (0x0002)
#define WFS_CDM_POSCENTER (0x0004)
#define WFS_CDM_POSTOP (0x0040)
#define WFS_CDM_POSBOTTOM (0x0080)
#define WFS_CDM_POSFRONT (0x0800)
#define WFS_CDM_POSREAR (0x1000)

/* additional values of WFSCDMPHYSICALCU.fwPosition */
#define WFS_CDM_POSREJECT (0x0100)

/* values of WFSCDMTELLERDETAILS.ulInputPosition */

#define WFS_CDM_POSINLEFT (0x0001)
#define WFS_CDM_POSINRIGHT (0x0002)
#define WFS_CDM_POSINCENTER (0x0004)
#define WFS_CDM_POSINTOP (0x0008)
#define WFS_CDM_POSINBOTTOM (0x0010)
#define WFS_CDM_POSINFRONT (0x0020)
#define WFS_CDM_POSINREAR (0x0040)

/* values of fwExchangeType */

#define WFS_CDM_EXBYHAND (0x0001)
#define WFS_CDM_EXTOCASSETTES (0x0002)

/* values of WFSCDMTELLERUPDATE.usAction */

#define WFS_CDM_CREATE_TELLER (1)
#define WFS_CDM_MODIFY_TELLER (2)
#define WFS_CDM_DELETE_TELLER (3)

/* values of WFSCDMCUERROR.wFailure */

#define WFS_CDM_CASHUNITEMPTY (1)
#define WFS_CDM_CASHUNITERROR (2)
#define WFS_CDM_CASHUNITFULL (4)
#define WFS_CDM_CASHUNITLOCKED (5)
#define WFS_CDM_CASHUNITINVALID (6)
#define WFS_CDM_CASHUNITCONFIG (7)
#define WFS_CDM_CASHUNITNOTCONF (8)

/* values of lpusReason in WFS_EXEE_CDM_NOTEERROR */

CWA 16926-5:2015 (E)

118

#define WFS_CDM_DOUBLENOTEDETECTED (1)
#define WFS_CDM_LONGNOTEDETECTED (2)
#define WFS_CDM_SKEWEDNOTE (3)
#define WFS_CDM_INCORRECTCOUNT (4)
#define WFS_CDM_NOTESTOOCLOSE (5)
#define WFS_CDM_OTHERNOTEERROR (6)
#define WFS_CDM_SHORTNOTEDETECTED (7)

/* values of WFSCDMPREPAREDISPENSE.wAction */

#define WFS_CDM_START (1)
#define WFS_CDM_STOP (2)

/* values of WFSCDMSTATUS.wAntiFraudModule */

#define WFS_CDM_AFMNOTSUPP (0)
#define WFS_CDM_AFMOK (1)
#define WFS_CDM_AFMINOP (2)
#define WFS_CDM_AFMDEVICEDETECTED (3)
#define WFS_CDM_AFMUNKNOWN (4)

/* values of WFSCDMGETITEMINFO.usLevel,
 WFSCDMITEMINFOSUMMARY.usLevel,
 WFSCDMGETALLITEMSINFO.usLevel,
 WFSCDMITEMINFOALL.usLevel */

#define WFS_CDM_LEVEL_1 (1)
#define WFS_CDM_LEVEL_2 (2)
#define WFS_CDM_LEVEL_3 (3)
#define WFS_CDM_LEVEL_4 (4)

/* values of WFSCDMITEMINFOALL.usLevel */

#define WFS_CDM_LEVEL_ALL (0)

/* values for WFSCDMGETITEMINFO.dwItemInfoType */

#define WFS_CDM_ITEM_SERIALNUMBER (0x00000001)
#define WFS_CDM_ITEM_SIGNATURE (0x00000002)
#define WFS_CDM_ITEM_IMAGEFILE (0x00000004)

/* values of lpusReason in WFS_EXEE_CDM_INCOMPLETERETRACT */

#define WFS_CDM_IRRETRACTFAILURE (1)
#define WFS_CDM_IRRETRACTAREAFULL (2)
#define WFS_CDM_IRFOREIGNITEMSDETECTED (3)
#define WFS_CDM_IRINVALIDBUNCH (4)

/* values for WFSCDMITEMINFOALL.wOnBlacklist */

#define WFS_CDM_ONBLACKLIST (0x0001)
#define WFS_CDM_NOTONBLACKLIST (0x0002)
#define WFS_CDM_BLACKLISTUNKNOWN (0x0003)

/* values for WFSCDMITEMINFOALL.wItemLocation */

#define WFS_CDM_LOCATION_DEVICE (0x0001)
#define WFS_CDM_LOCATION_CASHUNIT (0x0002)
#define WFS_CDM_LOCATION_CUSTOMER (0x0003)
#define WFS_CDM_LOCATION_UNKNOWN (0x0004)

/* XFS CDM Errors */

#define WFS_ERR_CDM_INVALIDCURRENCY (-(CDM_SERVICE_OFFSET + 0))
#define WFS_ERR_CDM_INVALIDTELLERID (-(CDM_SERVICE_OFFSET + 1))
#define WFS_ERR_CDM_CASHUNITERROR (-(CDM_SERVICE_OFFSET + 2))
#define WFS_ERR_CDM_INVALIDDENOMINATION (-(CDM_SERVICE_OFFSET + 3))
#define WFS_ERR_CDM_INVALIDMIXNUMBER (-(CDM_SERVICE_OFFSET + 4))
#define WFS_ERR_CDM_NOCURRENCYMIX (-(CDM_SERVICE_OFFSET + 5))
#define WFS_ERR_CDM_NOTDISPENSABLE (-(CDM_SERVICE_OFFSET + 6))

CWA 16926-5:2015 (E)

119

#define WFS_ERR_CDM_TOOMANYITEMS (-(CDM_SERVICE_OFFSET + 7))
#define WFS_ERR_CDM_UNSUPPOSITION (-(CDM_SERVICE_OFFSET + 8))
#define WFS_ERR_CDM_SAFEDOOROPEN (-(CDM_SERVICE_OFFSET + 10))
#define WFS_ERR_CDM_SHUTTERNOTOPEN (-(CDM_SERVICE_OFFSET + 12))
#define WFS_ERR_CDM_SHUTTEROPEN (-(CDM_SERVICE_OFFSET + 13))
#define WFS_ERR_CDM_SHUTTERCLOSED (-(CDM_SERVICE_OFFSET + 14))
#define WFS_ERR_CDM_INVALIDCASHUNIT (-(CDM_SERVICE_OFFSET + 15))
#define WFS_ERR_CDM_NOITEMS (-(CDM_SERVICE_OFFSET + 16))
#define WFS_ERR_CDM_EXCHANGEACTIVE (-(CDM_SERVICE_OFFSET + 17))
#define WFS_ERR_CDM_NOEXCHANGEACTIVE (-(CDM_SERVICE_OFFSET + 18))
#define WFS_ERR_CDM_SHUTTERNOTCLOSED (-(CDM_SERVICE_OFFSET + 19))
#define WFS_ERR_CDM_PRERRORNOITEMS (-(CDM_SERVICE_OFFSET + 20))
#define WFS_ERR_CDM_PRERRORITEMS (-(CDM_SERVICE_OFFSET + 21))
#define WFS_ERR_CDM_PRERRORUNKNOWN (-(CDM_SERVICE_OFFSET + 22))
#define WFS_ERR_CDM_ITEMSTAKEN (-(CDM_SERVICE_OFFSET + 23))
#define WFS_ERR_CDM_INVALIDMIXTABLE (-(CDM_SERVICE_OFFSET + 27))
#define WFS_ERR_CDM_OUTPUTPOS_NOT_EMPTY (-(CDM_SERVICE_OFFSET + 28))
#define WFS_ERR_CDM_INVALIDRETRACTPOSITION (-(CDM_SERVICE_OFFSET + 29))
#define WFS_ERR_CDM_NOTRETRACTAREA (-(CDM_SERVICE_OFFSET + 30))
#define WFS_ERR_CDM_NOCASHBOXPRESENT (-(CDM_SERVICE_OFFSET + 33))
#define WFS_ERR_CDM_AMOUNTNOTINMIXTABLE (-(CDM_SERVICE_OFFSET + 34))
#define WFS_ERR_CDM_ITEMSNOTTAKEN (-(CDM_SERVICE_OFFSET + 35))
#define WFS_ERR_CDM_ITEMSLEFT (-(CDM_SERVICE_OFFSET + 36))
#define WFS_ERR_CDM_INVALID_PORT (-(CDM_SERVICE_OFFSET + 37))
#define WFS_ERR_CDM_POWERSAVETOOSHORT (-(CDM_SERVICE_OFFSET + 38))
#define WFS_ERR_CDM_POWERSAVEMEDIAPRESENT (-(CDM_SERVICE_OFFSET + 39))
#define WFS_ERR_CDM_POSITION_NOT_EMPTY (-(CDM_SERVICE_OFFSET + 40))
#define WFS_ERR_CDM_INCOMPLETERETRACT (-(CDM_SERVICE_OFFSET + 41))
#define WFS_ERR_CDM_COMMANDUNSUPP (-(CDM_SERVICE_OFFSET + 42))
#define WFS_ERR_CDM_SYNCHRONIZEUNSUPP (-(CDM_SERVICE_OFFSET + 43))

/*===*/
/* CDM Info Command Structures */
/*===*/

typedef struct _wfs_cdm_position
{
 WORD fwPosition;
 WORD fwShutter;
 WORD fwPositionStatus;
 WORD fwTransport;
 WORD fwTransportStatus;
 WORD fwJammedShutterPosition;

} WFSCDMOUTPOS, *LPWFSCDMOUTPOS;

typedef struct _wfs_cdm_status
{
 WORD fwDevice;
 WORD fwSafeDoor;
 WORD fwDispenser;
 WORD fwIntermediateStacker;
 LPWFSCDMOUTPOS *lppPositions;
 LPSTR lpszExtra;
 DWORD dwGuidLights[WFS_CDM_GUIDLIGHTS_SIZE];
 WORD wDevicePosition;
 USHORT usPowerSaveRecoveryTime;
 WORD wAntiFraudModule;
} WFSCDMSTATUS, *LPWFSCDMSTATUS;

typedef struct _wfs_cdm_caps
{
 WORD wClass;
 WORD fwType;
 WORD wMaxDispenseItems;
 BOOL bCompound;
 BOOL bShutter;
 BOOL bShutterControl;
 WORD fwRetractAreas;
 WORD fwRetractTransportActions;

CWA 16926-5:2015 (E)

120

 WORD fwRetractStackerActions;
 BOOL bSafeDoor;
 BOOL bCashBox;
 BOOL bIntermediateStacker;
 BOOL bItemsTakenSensor;
 WORD fwPositions;
 WORD fwMoveItems;
 WORD fwExchangeType;
 LPSTR lpszExtra;
 DWORD dwGuidLights[WFS_CDM_GUIDLIGHTS_SIZE];
 BOOL bPowerSaveControl;
 BOOL bPrepareDispense;
 BOOL bAntiFraudModule;
 DWORD dwItemInfoTypes;
 BOOL bBlacklist;
 LPDWORD lpdwSynchronizableCommands;
} WFSCDMCAPS, *LPWFSCDMCAPS;

typedef struct _wfs_cdm_physicalcu
{
 LPSTR lpPhysicalPositionName;
 CHAR cUnitID[5];
 ULONG ulInitialCount;
 ULONG ulCount;
 ULONG ulRejectCount;
 ULONG ulMaximum;
 USHORT usPStatus;
 BOOL bHardwareSensor;
 ULONG ulDispensedCount;
 ULONG ulPresentedCount;
 ULONG ulRetractedCount;
} WFSCDMPHCU, *LPWFSCDMPHCU;

typedef struct _wfs_cdm_cashunit
{
 USHORT usNumber;
 USHORT usType;
 LPSTR lpszCashUnitName;
 CHAR cUnitID[5];
 CHAR cCurrencyID[3];
 ULONG ulValues;
 ULONG ulInitialCount;
 ULONG ulCount;
 ULONG ulRejectCount;
 ULONG ulMinimum;
 ULONG ulMaximum;
 BOOL bAppLock;
 USHORT usStatus;
 USHORT usNumPhysicalCUs;
 LPWFSCDMPHCU *lppPhysical;
 ULONG ulDispensedCount;
 ULONG ulPresentedCount;
 ULONG ulRetractedCount;
} WFSCDMCASHUNIT, *LPWFSCDMCASHUNIT;

typedef struct _wfs_cdm_cu_info
{
 USHORT usTellerID;
 USHORT usCount;
 LPWFSCDMCASHUNIT *lppList;
} WFSCDMCUINFO, *LPWFSCDMCUINFO;

typedef struct _wfs_cdm_teller_info
{
 USHORT usTellerID;
 CHAR cCurrencyID[3];
} WFSCDMTELLERINFO, *LPWFSCDMTELLERINFO;

typedef struct _wfs_cdm_teller_totals
{

CWA 16926-5:2015 (E)

121

 CHAR cCurrencyID[3];
 ULONG ulItemsReceived;
 ULONG ulItemsDispensed;
 ULONG ulCoinsReceived;
 ULONG ulCoinsDispensed;
 ULONG ulCashBoxReceived;
 ULONG ulCashBoxDispensed;
} WFSCDMTELLERTOTALS, *LPWFSCDMTELLERTOTALS;

typedef struct _wfs_cdm_teller_details
{
 USHORT usTellerID;
 ULONG ulInputPosition;
 WORD fwOutputPosition;
 LPWFSCDMTELLERTOTALS *lppTellerTotals;
} WFSCDMTELLERDETAILS, *LPWFSCDMTELLERDETAILS;

typedef struct _wfs_cdm_currency_exp
{
 CHAR cCurrencyID[3];
 SHORT sExponent;
} WFSCDMCURRENCYEXP, *LPWFSCDMCURRENCYEXP;

typedef struct _wfs_cdm_mix_type
{
 USHORT usMixNumber;
 USHORT usMixType;
 USHORT usSubType;
 LPSTR lpszName;
} WFSCDMMIXTYPE, *LPWFSCDMMIXTYPE;

typedef struct _wfs_cdm_mix_row
{
 ULONG ulAmount;
 LPUSHORT lpusMixture;
} WFSCDMMIXROW, *LPWFSCDMMIXROW;

typedef struct _wfs_cdm_mix_table
{
 USHORT usMixNumber;
 LPSTR lpszName;
 USHORT usRows;
 USHORT usCols;
 LPULONG lpulMixHeader;
 LPWFSCDMMIXROW *lppMixRows;
} WFSCDMMIXTABLE, *LPWFSCDMMIXTABLE;

typedef struct _wfs_cdm_denomination
{
 CHAR cCurrencyID[3];
 ULONG ulAmount;
 USHORT usCount;
 LPULONG lpulValues;
 ULONG ulCashBox;
} WFSCDMDENOMINATION, *LPWFSCDMDENOMINATION;

typedef struct _wfs_cdm_present_status
{
 LPWFSCDMDENOMINATION lpDenomination;
 WORD wPresentState;
 LPSTR lpszExtra;
} WFSCDMPRESENTSTATUS, *LPWFSCDMPRESENTSTATUS;

typedef struct _wfs_cdm_signature
{
 ULONG ulLength;
 LPVOID lpData;
} WFSCDMSIGNATURE, *LPWFSCDMSIGNATURE;

CWA 16926-5:2015 (E)

122

typedef struct _wfs_cdm_get_item_info
{
 USHORT usLevel;
 USHORT usIndex;
 DWORD dwItemInfoType;
} WFSCDMGETITEMINFO, *LPWFSCDMGETITEMINFO;

typedef struct _wfs_cdm_item_info
{
 CHAR cCurrencyID[3];
 ULONG ulValue;
 USHORT usRelease;
 LPWSTR lpszSerialNumber;
 LPWFSCDMSIGNATURE lpSignature;
 LPSTR lpszImageFileName;
} WFSCDMITEMINFO, *LPWFSCDMITEMINFO;

typedef struct _wfs_cdm_get_all_items_info
{
 USHORT usLevel;
} WFSCDMGETALLITEMSINFO, *LPWFSCDMGETALLITEMSINFO;

typedef struct _wfs_cdm_item_info_all
{
 USHORT usLevel;
 CHAR cCurrencyID[3];
 ULONG ulValue;
 USHORT usRelease;
 LPWSTR lpszSerialNumber;
 LPSTR lpszImageFileName;
 WORD wOnBlacklist;
 WORD wItemLocation;
 USHORT usNumber;
} WFSCDMITEMINFOALL, *LPWFSCDMITEMINFOALL;

typedef struct _wfs_cdm_all_items_info
{
 USHORT usCount;
 LPWFSCDMITEMINFOALL *lppItemsList;
} WFSCDMALLITEMSINFO, *LPWFSCDMALLITEMSINFO;

/*===*/
/* CDM Execute Command Structures */
/*===*/

typedef struct _wfs_cdm_denominate
{
 USHORT usTellerID;
 USHORT usMixNumber;
 LPWFSCDMDENOMINATION lpDenomination;
} WFSCDMDENOMINATE, *LPWFSCDMDENOMINATE;

typedef struct _wfs_cdm_dispense
{
 USHORT usTellerID;
 USHORT usMixNumber;
 WORD fwPosition;
 BOOL bPresent;
 LPWFSCDMDENOMINATION lpDenomination;
} WFSCDMDISPENSE, *LPWFSCDMDISPENSE;

typedef struct _wfs_cdm_physical_cu
{
 BOOL bEmptyAll;
 WORD fwPosition;
 LPSTR lpPhysicalPositionName;
} WFSCDMPHYSICALCU, *LPWFSCDMPHYSICALCU;

typedef struct _wfs_cdm_counted_phys_cu

CWA 16926-5:2015 (E)

123

{
 LPSTR lpPhysicalPositionName;
 CHAR cUnitId[5];
 ULONG ulDispensed;
 ULONG ulCounted;
 USHORT usPStatus;
} WFSCDMCOUNTEDPHYSCU, *LPWFSCDMCOUNTEDPHYSCU;

typedef struct _wfs_cdm_count
{
 USHORT usNumPhysicalCUs;
 LPWFSCDMCOUNTEDPHYSCU *lppCountedPhysCUs;
} WFSCDMCOUNT, *LPWFSCDMCOUNT;

typedef struct _wfs_cdm_retract
{
 WORD fwOutputPosition;
 USHORT usRetractArea;
 USHORT usIndex;
} WFSCDMRETRACT, *LPWFSCDMRETRACT;

typedef struct _wfs_cdm_item_number
{
 CHAR cCurrencyID[3];
 ULONG ulValues;
 USHORT usRelease;
 ULONG ulCount;
 USHORT usNumber;
} WFSCDMITEMNUMBER, *LPWFSCDMITEMNUMBER;

typedef struct _wfs_cdm_item_number_list
{
 USHORT usNumOfItemNumbers;
 LPWFSCDMITEMNUMBER *lppItemNumber;
} WFSCDMITEMNUMBERLIST, *LPWFSCDMITEMNUMBERLIST;

typedef struct _wfs_cdm_teller_update
{
 USHORT usAction;
 LPWFSCDMTELLERDETAILS lpTellerDetails;
} WFSCDMTELLERUPDATE, *LPWFSCDMTELLERUPDATE;

typedef struct _wfs_cdm_start_ex
{
 WORD fwExchangeType;
 USHORT usTellerID;
 USHORT usCount;
 LPUSHORT lpusCUNumList;
} WFSCDMSTARTEX, *LPWFSCDMSTARTEX;

typedef struct _wfs_cdm_itemposition
{
 USHORT usNumber;
 LPWFSCDMRETRACT lpRetractArea;
 WORD fwOutputPosition;
} WFSCDMITEMPOSITION, *LPWFSCDMITEMPOSITION;

typedef struct _wfs_cdm_calibrate
{
 USHORT usNumber;
 USHORT usNumOfBills;
 LPWFSCDMITEMPOSITION *lpPosition;
} WFSCDMCALIBRATE, *LPWFSCDMCALIBRATE;

typedef struct _wfs_cdm_set_guidlight
{
 WORD wGuidLight;
 DWORD dwCommand;
} WFSCDMSETGUIDLIGHT, *LPWFSCDMSETGUIDLIGHT;

CWA 16926-5:2015 (E)

124

typedef struct _wfs_cdm_power_save_control
{
 USHORT usMaxPowerSaveRecoveryTime;
} WFSCDMPOWERSAVECONTROL, *LPWFSCDMPOWERSAVECONTROL;

typedef struct _wfs_cdm_prepare_dispense
{
 WORD wAction;
} WFSCDMPREPAREDISPENSE, *LPWFSCDMPREPAREDISPENSE;

typedef struct _wfs_cdm_blacklist_element
{
 LPWSTR lpszSerialNumber;
 CHAR cCurrencyID[3];
 ULONG ulValue;
} WFSCDMBLACKLISTELEMENT, *LPWFSCDMBLACKLISTELEMENT;

typedef struct _wfs_cdm_blacklist
{
 LPWSTR lpszVersion;
 USHORT usCount;
 LPWFSCDMBLACKLISTELEMENT *lppBlacklistElements;
} WFSCDMBLACKLIST, *LPWFSCDMBLACKLIST;

typedef struct _wfs_cdm_synchronize_command
{
 DWORD dwCommand;
 LPVOID lpCmdData;
} WFSCDMSYNCHRONIZECOMMAND, *LPWFSCDMSYNCHRONIZECOMMAND;

/*===*/
/* CDM Message Structures */
/*===*/

typedef struct _wfs_cdm_cu_error
{
 WORD wFailure;
 LPWFSCDMCASHUNIT lpCashUnit;
} WFSCDMCUERROR, *LPWFSCDMCUERROR;

typedef struct _wfs_cdm_counts_changed
{
 USHORT usCount;
 LPUSHORT lpusCUNumList;
} WFSCDMCOUNTSCHANGED, *LPWFSCDMCOUNTSCHANGED;

typedef struct _wfs_cdm_device_position
{
 WORD wPosition;
} WFSCDMDEVICEPOSITION, *LPWFSCDMDEVICEPOSITION;

typedef struct _wfs_cdm_power_save_change
{
 USHORT usPowerSaveRecoveryTime;
} WFSCDMPOWERSAVECHANGE, *LPWFSCDMPOWERSAVECHANGE;

typedef struct _wfs_cdm_item_info_summary
{
 USHORT usLevel;
 USHORT usNumOfItems;
} WFSCDMITEMINFOSUMMARY, *LPWFSCDMITEMINFOSUMMARY;

typedef struct _wfs_cdm_incomplete_retract
{
 WFSCDMITEMNUMBERLIST lpItemNumberList;
 USHORT usReason;
} WFSCDMINCOMPLETERETRACT, *LPWFSCDMINCOMPLETERETRACT;

typedef struct _wfs_cdm_shutter_status_changed

CWA 16926-5:2015 (E)

125

{
 WORD fwPosition;
 WORD fwShutter;
} WFSCDMSHUTTERSTATUSCHANGED, *LPWFSCDMSHUTTERSTATUSCHANGED;

/* restore alignment */
#pragma pack (pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif

#endif /* __INC_XFSCDM__H */

	European foreword
	1. Introduction
	1.1 Background to Release 3.30
	1.2 XFS Service-Specific Programming

	2. Cash Dispensers
	3. References
	4. Info Commands
	4.1 WFS_INF_CDM_STATUS
	4.2 WFS_INF_CDM_CAPABILITIES
	4.3 WFS_INF_CDM_CASH_UNIT_INFO
	4.4 WFS_INF_CDM_TELLER_INFO
	4.5 WFS_INF_CDM_CURRENCY_EXP
	4.6 WFS_INF_CDM_MIX_TYPES
	4.7 WFS_INF_CDM_MIX_TABLE
	4.8 WFS_INF_CDM_PRESENT_STATUS
	4.9 WFS_INF_CDM_GET_ITEM_INFO
	4.10 WFS_INF_CDM_GET_BLACKLIST
	4.11 WFS_INF_CDM_GET_ALL_ITEMS_INFO

	5. Execute Commands
	5.1 WFS_CMD_CDM_DENOMINATE
	5.2 WFS_CMD_CDM_DISPENSE
	5.3 WFS_CMD_CDM_COUNT
	5.4 WFS_CMD_CDM_PRESENT
	5.5 WFS_CMD_CDM_REJECT
	5.6 WFS_CMD_CDM_RETRACT
	5.7 WFS_CMD_CDM_OPEN_SHUTTER
	5.8 WFS_CMD_CDM_CLOSE_SHUTTER
	5.9 WFS_CMD_CDM_SET_TELLER_INFO
	5.10 WFS_CMD_CDM_SET_CASH_UNIT_INFO
	5.11 WFS_CMD_CDM_START_EXCHANGE
	5.12 WFS_CMD_CDM_END_EXCHANGE
	5.13 WFS_CMD_CDM_OPEN_SAFE_DOOR
	5.14 WFS_CMD_CDM_CALIBRATE_CASH_UNIT
	5.15 WFS_CMD_CDM_SET_MIX_TABLE
	5.16 WFS_CMD_CDM_RESET
	5.17 WFS_CMD_CDM_TEST_CASH_UNITS
	5.18 WFS_CMD_CDM_SET_GUIDANCE_LIGHT
	5.19 WFS_CMD_CDM_POWER_SAVE_CONTROL
	5.20 WFS_CMD_CDM_PREPARE_DISPENSE
	5.21 WFS_CMD_CDM_SET_BLACKLIST
	5.22 WFS_CMD_CDM_SYNCHRONIZE_COMMAND

	6. Events
	6.1 WFS_SRVE_CDM_SAFEDOOROPEN
	6.2 WFS_SRVE_CDM_SAFEDOORCLOSED
	6.3 WFS_USRE_CDM_CASHUNITTHRESHOLD
	6.4 WFS_SRVE_CDM_CASHUNITINFOCHANGED
	6.5 WFS_SRVE_CDM_TELLERINFOCHANGED
	6.6 WFS_EXEE_CDM_DELAYEDDISPENSE
	6.7 WFS_EXEE_CDM_STARTDISPENSE
	6.8 WFS_EXEE_CDM_CASHUNITERROR
	6.9 WFS_SRVE_CDM_ITEMSTAKEN
	6.10 WFS_SRVE_CDM_COUNTS_CHANGED
	6.11 WFS_EXEE_CDM_PARTIALDISPENSE
	6.12 WFS_EXEE_CDM_SUBDISPENSEOK
	6.13 WFS_EXEE_CDM_INCOMPLETEDISPENSE
	6.14 WFS_EXEE_CDM_NOTEERROR
	6.15 WFS_SRVE_CDM_ITEMSPRESENTED
	6.16 WFS_SRVE_CDM_MEDIADETECTED
	6.17 WFS_EXEE_CDM_INPUT_P6
	6.18 WFS_SRVE_CDM_DEVICEPOSITION
	6.19 WFS_SRVE_CDM_POWER_SAVE_CHANGE
	6.20 WFS_EXEE_CDM_INFO_AVAILABLE
	6.21 WFS_EXEE_CDM_INCOMPLETERETRACT
	6.22 WFS_SRVE_CDM_SHUTTERSTATUSCHANGED

	7. Sub-Dispensing Command Flow
	8. Rules for Cash Unit Exchange
	9. Events Associated with Cash Unit Status Changes
	9.1 One Physical Cash Unit Goes LOW
	9.2 Last Physical Cash Unit Goes LOW
	9.3 One Physical Cash Unit Goes INOP
	9.4 Last Physical Cash Unit Goes EMPTY

	10. Multiple Dispense Command Flow
	11. C - Header file

